Advertisement

Heat Kernel Coefficients for Two-Dimensional Schrödinger Operators

  • Yuri BerestEmail author
  • Tim Cramer
  • Farkhod Eshmatov
Article

Abstract

In this note, we compute the Hadamard coefficients of algebraically integrable Schrödinger operators in two dimensions. These operators first appeared in [BL] and [B] in connection with Huygens’ principle, and our result completes, in a sense, the investigation initiated in those papers.

Keywords

Huygens Heat Kernel Goursat Problem Heat Kernel Expansion London Mathematical Society Student Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. AM.
    Adler M., Moser J.: On a class of polynomials connected with the Korteweg de Vries equation. Commun. Math. Phys. 61, 1–30 (1978)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. Ba.
    Babich V.M.: Hadamard’s ansatz, its analogues, generalizations and applications. St.-Petersburg Math. J. 3, 937–972 (1992)MathSciNetGoogle Scholar
  3. B.
    Berest Y.: Solution of a restricted Hadamard problem on Minkowski spaces. Comm. Pure Appl. Math. 50, 1019–1052 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. BL.
    Berest Y., Loutsenko I.: Huygens’ principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation. Commun. Math. Phys. 190, 113–132 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. BV.
    Berest Y., Veselov A.: Huygens’ principle and integrability. Russ. Math. Surv. 49, 3–77 (1994)CrossRefMathSciNetGoogle Scholar
  6. BV1.
    Berest Y., Veselov A.: Hadamard’s problem and Coxeter groups: new examples of Huygens equations. Funct. Anal. Appl. 28(1), 3–12 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. CV.
    Chalykh O., Veselov A.: Commutative rings of partial differential operators and Lie algebras. Commun. Math. Phys. 126, 597–611 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. CFV.
    Chalykh O., Feigin M., Veselov A.: Multidimensional Baker-Akhiezer functions and Huygens’ principle. Commun. Math. Phys. 206, 533–566 (1999)zbMATHADSMathSciNetCrossRefGoogle Scholar
  9. C.
    Crum M.M.: Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2) 6, 121–127 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
  10. D.
    Duistermaat J.J.: M. Riesz’s families of operators. Nieuw Arch. Wisk. 9, 93–101 (1991)MathSciNetGoogle Scholar
  11. GS.
    Gel’fand, I.M., Shilov, G.E.: Generalized Functions, Vol. I. New York-London: Academic Press, 1964zbMATHGoogle Scholar
  12. Gr.
    Grünbaum, F.A.: Some bispectral musings, In: The Bispectral Problem, CRM Proc. Lecture Notes 14, Providence, RI: Amer. Math. Soc., 1998, pp. 31–45Google Scholar
  13. G.
    Günther, P.: Huygens’ Principle and Hyperbolic Equations. Boston, MA: Academic Press, 1988zbMATHGoogle Scholar
  14. H.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven-London: Yale University Press, 1923zbMATHGoogle Scholar
  15. Ha.
    Haine L.: The Lagnese-Stellmacher potentials revisited. Lett. Math. Phys. 76, 269–282 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. I1.
    Iliev P.: On the heat kernel and the Korteweg-de Vries hierarchy. Ann. Inst. Fourier (Grenoble) 55, 2117–2127 (2005)zbMATHMathSciNetGoogle Scholar
  17. I2.
    Iliev P.: Finite heat kernel expansions on the real line. Proc. Amer. Math. Soc. 135, 1889–1894 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  18. L.
    Lagnese J.E.: A solution of Hadamard’s problem for a rectricted class of operators. Proc. Amer. Math. Soc. 19, 981–988 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  19. LS.
    Lagnese J.E., Stellmacher K.L.: A method of generating classes of Huygens’ operators. J. Math. Mech. 17, 461–472 (1967)zbMATHMathSciNetGoogle Scholar
  20. R.
    Rosenberg, S.: The Laplacian on a Riemannian Manifold. London Mathematical Society Student Texts 31, Cambridge: Cambridge University Press, 1997Google Scholar
  21. S.
    Schimming R.: An explicit expression for the Korteweg-de Vries hierarchy. Z. Anal. Anwendungen 7, 203–214 (1988)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsYale UniversityNew HavenUSA
  3. 3.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations