Skip to main content
Log in

Heat Kernel Coefficients for Two-Dimensional Schrödinger Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this note, we compute the Hadamard coefficients of algebraically integrable Schrödinger operators in two dimensions. These operators first appeared in [BL] and [B] in connection with Huygens’ principle, and our result completes, in a sense, the investigation initiated in those papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M., Moser J.: On a class of polynomials connected with the Korteweg de Vries equation. Commun. Math. Phys. 61, 1–30 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Babich V.M.: Hadamard’s ansatz, its analogues, generalizations and applications. St.-Petersburg Math. J. 3, 937–972 (1992)

    MathSciNet  Google Scholar 

  3. Berest Y.: Solution of a restricted Hadamard problem on Minkowski spaces. Comm. Pure Appl. Math. 50, 1019–1052 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berest Y., Loutsenko I.: Huygens’ principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation. Commun. Math. Phys. 190, 113–132 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Berest Y., Veselov A.: Huygens’ principle and integrability. Russ. Math. Surv. 49, 3–77 (1994)

    Article  MathSciNet  Google Scholar 

  6. Berest Y., Veselov A.: Hadamard’s problem and Coxeter groups: new examples of Huygens equations. Funct. Anal. Appl. 28(1), 3–12 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chalykh O., Veselov A.: Commutative rings of partial differential operators and Lie algebras. Commun. Math. Phys. 126, 597–611 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Chalykh O., Feigin M., Veselov A.: Multidimensional Baker-Akhiezer functions and Huygens’ principle. Commun. Math. Phys. 206, 533–566 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Crum M.M.: Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2) 6, 121–127 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duistermaat J.J.: M. Riesz’s families of operators. Nieuw Arch. Wisk. 9, 93–101 (1991)

    MathSciNet  Google Scholar 

  11. Gel’fand, I.M., Shilov, G.E.: Generalized Functions, Vol. I. New York-London: Academic Press, 1964

    MATH  Google Scholar 

  12. Grünbaum, F.A.: Some bispectral musings, In: The Bispectral Problem, CRM Proc. Lecture Notes 14, Providence, RI: Amer. Math. Soc., 1998, pp. 31–45

  13. Günther, P.: Huygens’ Principle and Hyperbolic Equations. Boston, MA: Academic Press, 1988

    MATH  Google Scholar 

  14. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven-London: Yale University Press, 1923

    MATH  Google Scholar 

  15. Haine L.: The Lagnese-Stellmacher potentials revisited. Lett. Math. Phys. 76, 269–282 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Iliev P.: On the heat kernel and the Korteweg-de Vries hierarchy. Ann. Inst. Fourier (Grenoble) 55, 2117–2127 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Iliev P.: Finite heat kernel expansions on the real line. Proc. Amer. Math. Soc. 135, 1889–1894 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lagnese J.E.: A solution of Hadamard’s problem for a rectricted class of operators. Proc. Amer. Math. Soc. 19, 981–988 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lagnese J.E., Stellmacher K.L.: A method of generating classes of Huygens’ operators. J. Math. Mech. 17, 461–472 (1967)

    MATH  MathSciNet  Google Scholar 

  20. Rosenberg, S.: The Laplacian on a Riemannian Manifold. London Mathematical Society Student Texts 31, Cambridge: Cambridge University Press, 1997

  21. Schimming R.: An explicit expression for the Korteweg-de Vries hierarchy. Z. Anal. Anwendungen 7, 203–214 (1988)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Berest.

Additional information

Communicated by L. Takhtajan

Berest’s work partially supported by NSF grant DMS 04-07502.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berest, Y., Cramer, T. & Eshmatov, F. Heat Kernel Coefficients for Two-Dimensional Schrödinger Operators. Commun. Math. Phys. 283, 853–860 (2008). https://doi.org/10.1007/s00220-008-0538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0538-x

Keywords

Navigation