Skip to main content
Log in

Superbosonization of Invariant Random Matrix Ensembles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

‘Superbosonization’ is a new variant of the method of commuting and anti-commuting variables as used in studying random matrix models of disordered and chaotic quantum systems. We here give a concise mathematical exposition of the key formulas of superbosonization. Conceived by analogy with the bosonization technique for Dirac fermions, the new method differs from the traditional one in that the superbosonization field is dual to the usual Hubbard-Stratonovich field. The present paper addresses invariant random matrix ensembles with symmetry group U n , O n , or USp n , giving precise definitions and conditions of validity in each case. The method is illustrated at the example of Wegner’s n-orbital model. Superbosonization promises to become a powerful tool for investigating the universality of spectral correlation functions for a broad class of random matrix ensembles of non-Gaussian and/or non-invariant type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezin F.A.: Introduction to Superanalysis. Reidel Publishing Co., Dordrecht (1987)

    MATH  Google Scholar 

  2. Berruto F., Brower R.C., Svetitsky B.: Effective Lagrangian for strongly coupled domain wall fermions. Phys. Rev. D 64, 114504 (2001)

    Article  ADS  Google Scholar 

  3. Bunder J.E., Efetov K.B., Kravtsov V.E., Yevtushenko O.M., Zirnbauer M.R.: Superbosonization formula and its application to random matrix theory. J. Stat. Phys. 129, 809–832 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Disertori M., Pinson H., Spencer T.: Density of states of random band matrices. Commun. Math. Phys. 232, 83–124 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Dyson F.J.: The threefold way: algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Efetov K.B.: Supersymmetry in disorder and chaos. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Efetov K.B., Schwiete G., Takahashi K.: Bosonization for disordered and chaotic systems. Phys. Rev. Lett. 92, 026807 (2004)

    Article  ADS  Google Scholar 

  8. Fyodorov Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nucl. Phys. B 621, 643–674 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Guhr T.: Arbitrary unitarily invariant random matrix ensembles and supersymmetry. J. Phys. A 39, 13191–13223 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Hackenbroich G., Weidenmüller H.A.: Universality of Random-Matrix Results for Non-Gaussian Ensembles. Phys. Rev. Lett. 74, 4118–4121 (1995)

    Article  ADS  Google Scholar 

  11. Howe R.: Remarks on classical invariant theory. TAMS 313, 539–570 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity free actions and beyond. In the Schur Lectures, Providence, RI: Amer. Math. Soc., 1995

  13. Kawamoto N., Smit J.: Effective Lagrangian and dynamical symmetry breaking in strongly coupled lattice QCD. Nucl. Phys. B 192, 100–124 (1981)

    Article  ADS  Google Scholar 

  14. Kostant B.: Graded Lie theory and prequantization. Lecture Notes in Math. 570, 177–306 (1977)

    Article  MathSciNet  Google Scholar 

  15. Lehmann N., Saher D., Sokolov V.V., Sommers H.-J.: Chaotic scattering – the supersymmetry method for large number of channels. Nucl. Phys. A 582, 223–256 (1995)

    Article  ADS  Google Scholar 

  16. Luna D.: Fonctions differentiables invariantes sous l’operation d’un groupe reductif. Ann. Inst. Fourier 26, 33–49 (1976)

    MATH  MathSciNet  Google Scholar 

  17. Schäfer L., Wegner F.: Disordered system with n orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes. Z. Phys. B 38, 113–126 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  18. Schwarz G.: Lifting smooth homotopy of orbit spaces. Pub. Math. IHES 51, 37 (1980)

    MATH  Google Scholar 

  19. Schwarz A., Zaboronsky O.: Supersymmetry and localization. Commun. Math. Phys. 183, 463–476 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Wegner F.J.: Disordered system with N orbitals per site: N  =  ∞ limit. Phys. Rev. B 19, 783–792 (1979)

    Article  ADS  Google Scholar 

  21. Zirnbauer, M.R.: Supersymmetry methods in random matrix theory. In: Encyclopedia of Mathematical Physics, Vol. 5, Amsterdam: Elsevier, 2006 pp. 151–160

  22. Zirnbauer M.R.: Riemannian symmetric superspaces and their origin in random matrix theory. J. Math. Phys. 37, 4986–5018 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Zirnbauer.

Additional information

Communicated by J. Z. Imbrie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Littelmann, P., Sommers, H.J. & Zirnbauer, M.R. Superbosonization of Invariant Random Matrix Ensembles. Commun. Math. Phys. 283, 343–395 (2008). https://doi.org/10.1007/s00220-008-0535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0535-0

Keywords

Navigation