Skip to main content
Log in

Modules-at-Infinity for Quantum Vertex Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This is a sequel to [Li4] and [Li5] in a series to study vertex algebra-like structures arising from various algebras such as quantum affine algebras and Yangians. In this paper, we study two versions of the double Yangian \({DY_{\hbar}(sl_{2})}\) , denoted by DY q (sl 2) and \({DY_{q}^{\infty}(sl_{2})}\) with q a nonzero complex number. For each nonzero complex number q, we construct a quantum vertex algebra V q and prove that every DY q (sl 2)-module is naturally a V q -module. We also show that \({DY_{q}^{\infty}(sl_{2})}\) -modules are what we call V q -modules-at-infinity. To achieve this goal, we study what we call \({\mathcal{S}}\) -local subsets and quasi-local subsets of \({Hom (W,W((x^{-1})))}\) for any vector space W, and we prove that any \({\mathcal{S}}\) -local subset generates a (weak) quantum vertex algebra and that any quasi-local subset generates a vertex algebra with W as a (left) quasi module-at-infinity. Using this result we associate the Lie algebra of pseudo-differential operators on the circle with vertex algebras in terms of quasi modules-at-infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov B., Kac V.: Field algebras. Internat. Math. Res. Notices 3, 123–159 (2003)

    Article  MathSciNet  Google Scholar 

  2. Drinfeld V.G.: Hopf algebras and quantum Yang-Baxter equation. Soviet Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  3. Etingof P., Kazhdan D.: Quantization of Lie bialgebras, V. Selecta Mathematica (N. S.) 6, 105–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104, 1993

  5. Frenkel I.B., Lepowsky J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Math., Vol. 134, Boston: Academic Press, 1988

    Google Scholar 

  6. Frenkel I., Zhu Y.-C.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huang Y.-Z., Lepowsky J.: A theory of tensor products for modules categories for a vertex operator algebra, I. Selecta Mathematica (N. S.) 1, 699–756 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golenishcheva-Kutuzova M., Kac V.G.: Γ-conformal algebras. J. Math. Phys. 39, 2290–2305 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Kac V.G.: Vertex Algebras for Beginners. University Lecture Series, vol. 10, Providence, RI: Amer. Math. Soc., 1997

  10. Karel, M., Li, H.-S.: Some quantum vertex algebras of Zamolodchikov-Faddeev type. Preprint, arXiv:0801.2901

  11. Khoroshkin, S.: Central extension of the Yangian Double. arXiv: q-alg/9602031

  12. Khoroshkin S., Tolstoy V.: Yangian double. Lett. Math. Phys. 36, 373–402 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Lepowsky, J., Li, H.-S.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Math. 227, Boston: Birkhäuser, 2004

  14. Li H.-S.: Regular representations of vertex operator algebras. Commun. Contemp. Math. 4, 639–683 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li H.-S.: Axiomatic G 1-vertex algebras. Commun. Contemp. Math. 5, 281–327 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Li H.-S.: A new construction of vertex algebras and quasi modules for vertex algebras. Adv. Math. 202, 232–286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li H.-S.: Nonlocal vertex algebras generated by formal vertex operators. Selecta Mathematica (N. S.) 11, 349–397 (2005)

    Article  MATH  Google Scholar 

  18. Li H.-S.: Constructing quantum vertex algebras. Int. J. Math. 17, 441–476 (2006)

    Article  MATH  Google Scholar 

  19. Li H.-S.: On certain generalizations of twisted affine Lie algebras and quasi-modules for Γ-vertex algebras. J. Pure Appl. Alg. 209, 853–871 (2007)

    Article  MATH  Google Scholar 

  20. Primc M.: Vertex algebras generated by Lie algebras. J. Pure Appl. Alg. 135, 253–293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Smirnov F.: Dynamical symmetries of massive integrable models. J. Modl. Phys. A 7(Suppl. 1B), 813–838 (1992)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Li.

Additional information

Communicated by Y. Kawahigashi

Partially supported by NSA grant H98230-05-1-0018 and NSF grant DMS-0600189.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H. Modules-at-Infinity for Quantum Vertex Algebras. Commun. Math. Phys. 282, 819–864 (2008). https://doi.org/10.1007/s00220-008-0534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0534-1

Keywords

Navigation