Skip to main content
Log in

A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of identifying sharp criteria under which radial H 1 (finite energy) solutions to the focusing 3d cubic nonlinear Schrödinger equation (NLS) i t u + Δu + |u|2 u = 0 scatter, i.e., approach the solution to a linear Schrödinger equation as t → ±∞. The criteria is expressed in terms of the scale-invariant quantities \({\|u_0\|_{L^2}\|\nabla u_0\|_{L^2}}\) and M[u]E[u], where u 0 denotes the initial data, and M[u] and E[u] denote the (conserved in time) mass and energy of the corresponding solution u(t). The focusing NLS possesses a soliton solution e it Q(x), where Q is the ground-state solution to a nonlinear elliptic equation, and we prove that if M[u]E[u] < M[Q]E[Q] and \({\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} < \|Q\|_{L^2}\|\nabla Q\|_{L^2}}\), then the solution u(t) is globally well-posed and scatters. This condition is sharp in the sense that the soliton solution e it Q(x), for which equality in these conditions is obtained, is global but does not scatter. We further show that if M[u]E[u] < M[Q]E[Q] and \({\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} > \|Q\|_{L^2}\|\nabla Q\|_{L^2}}\), then the solution blows-up in finite time. The technique employed is parallel to that employed by Kenig-Merle [17] in their study of the energy-critical NLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergé L., Alexander T., Kivshar Y.: Stability criterion for attractive Bose-Einstein condensates. Phys. Rev. A 62(2), 023607 (2000)

    Article  ADS  Google Scholar 

  2. Bégout P.: Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation. Adv. Math. Sci. Appl. 12(2), 817–827 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York: New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc. 2003

  4. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \({\mathbb{R}^{3}}\). Comm. Pure Appl. Math. 57(8), 987–1014 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3. http://arxiv.org/PS_cache/math/pdf/0402/0402129v7.pdf, 2006

  6. Donley E., Claussen N., Cornish S., Roberts J., Cornell E., Wieman C.: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)

    Article  ADS  Google Scholar 

  7. Duyckaerts, T., Roudenko, S.: Threshold solutions for the focusing 3d cubic Schrödinger equation, arxiv.org (preprint). arxiv:0806.1752[math.AP]

  8. Fibich, G.: Some modern aspects of self-focusing theory. In: Self-Focusing: Past and Present, R.W. Boyd, S.G. Lukishova, Y.R. Shen, eds., to be published by Springer, in August 2008, available at http://www.math.tau.ac.il/%7Efibich/Manuscripts/Fibich_G_SF_Springer.pdf

  9. Foschi D.: Inhomogeneous Strichartz estimates. J. Hyper. Diff. Eq. 2(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginibre J., Velo G.: On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case. J. Funct. Anal. 32(1–32), 33–71 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ginibre J., Velo G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. (9) 64(4), 363–401 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Glassey R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation. J. Math. Phys. 18(9), 1794–1797 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res. Express, Vol. 2007, article ID abm004, doi:10.1093/amrx/abm004, 2007

  14. Kato, T.: An L q,r-theory for nonlinear Schrödinger equations. In: Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Tokyo: Math. Soc. Japan, 1994, pp. 223–238

  15. Keraani S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equation. J. Diff. Eq. 175, 353–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kenig C.E., Merle F.: Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kosmatova N.E., Shvets V.F., Zakharov V.E.: Computer simulation of wave collapses in the nonlinear Schrödinger equation. Physica D 52, 16–35 (1991)

    Article  ADS  Google Scholar 

  20. Kuznetsov E.A., Juul Rasmussen J., Rypdal K., Turitsyn S.K.: Sharper criteria for the wave collapse. Phys. D 87(1-4), 273–284 (1995)

    Article  MathSciNet  Google Scholar 

  21. Linares, F., Ponce, G.: Introduction to nonlinear dispersive equations. Rio de Janeiro: IMPA, 2004

  22. Merle, F., Raphaël, P.: Blow-up of the critical norm for some radial L 2 supercritical nonlinear Schrödinger equations. http://arxiv.org/list/math/0605378v2, 2006

  23. Ogawa T., Tsutsumi Y.: Blow-Up of H 1 solution for the Nonlinear Schrödinger Equation. J. Diff. Eq. 92, 317–330 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schlein, B.: Derivation of the Gross-Pitaevskii hierarchy. In: Mathematical physics of quantum mechanics, Lecture Notes in Phys., 690, Berlin: Springer, 2006, pp. 279–293, see also arxiv.org http://arXiv.org/list/math-ph/0504078, 2005

  25. Soffer, A.: Soliton dynamics and scattering. In: Proceedings of the International Congress of Mathematicians, (Madrid, Spain, 2006), Zurich: European Math. Soc., 2006, pp. 459–471

  26. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  ADS  MATH  Google Scholar 

  27. Sulem, C., Sulem, P-L.: The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139. New York: Springer-Verlag, 1999

  28. Tao T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial Differ. Equ. 1(1), 1–48 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Tao T.: A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations. Dynamics of PDE 4, 1–53 (2007)

    MATH  Google Scholar 

  30. Tao, T.: Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC, Providence, RI: Amer. Math. Soc. 2006

  31. Vilela M.: Regularity of solutions to the free Schrödinger equation with radial initial data. Illinois J. Math. 45(2), 361–370 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Weinstein M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982)

    Article  ADS  Google Scholar 

  33. Zakharov, V.E.: Collapse of Langmuir waves, Zh. Eksp. Teor. Fiz. 62, 1745–1751 (1972), (in Russian); Sov. Phys. JETP, 35 908–914 (1972), (English)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Holmer.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmer, J., Roudenko, S. A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation. Commun. Math. Phys. 282, 435–467 (2008). https://doi.org/10.1007/s00220-008-0529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0529-y

Keywords

Navigation