Skip to main content
Log in

On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schrödinger Equation with a Periodic Potential

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A proof of the existence of stationary dark soliton solutions of a cubic-quintic nonlinear Schrödinger equation with a periodic potential is given. It is based on the interpretation of the dark soliton as a heteroclinic of the Poincaré map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitaevskii L.P., Stringari S.: Bose-Einstein condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  2. Brazhnyi V.A., Konotop V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627 (2004)

    Article  ADS  Google Scholar 

  3. Brazhnyi V.A., Konotop V.V., Pitaevskii L.P.: Dark solitons as quasiparticles in trapped condensates. Phys. Rev. A 73, 053601 (2006)

    Article  ADS  Google Scholar 

  4. Abdullaev F.K., Salerno M.: Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices. Phys. Rev. A 72, 033617 (2005)

    Article  ADS  Google Scholar 

  5. Alfimov G.L., Konotop V.V., Pacciani P.: Stationary localized modes in the quintic nonlinear Schrodinger equation with a periodic potential. Phys. Rev. A 75, 023624 (2007)

    Article  ADS  Google Scholar 

  6. Konotop, V.V., Salerno, M.: Modulational instability in Bose-Einstein condensates in optical lattices. Phys. Rev. A 65, 021602(R) (2002)

  7. Alfimov G.L., Konotop V.V., Salerno M.: Matter solitons in Bose-Einstein condensates with optical lattices. Europhys. Lett. 58, 7 (2002)

    Article  ADS  Google Scholar 

  8. De Coster, C., Habets, P.: Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results. In: Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, ed. F. Zanolin, CISM-ICMS Courses and Lectures 371, New York: Springer Verlag, 1996

  9. Lloyd N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  10. Mawhin, J.: Topological degree and boundary value problems for nonlinear differential equations. In: “Topological Methods for Ordinary Differential Equations”, (Montecatini Terme, 1991), M. Furi, P. Zecca eds., Lecture Notes in Mathematics 1537, Berlin: Springer-Verlag 1993, pp. 74–142

  11. Ortega, R.: Some applications of the topological degree to stability theory. In: “Topological methods in differential equations and inclusions”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472, Dordrecht: Kluwer Acad. Publ., 1995, pp. 377–409

  12. Brown M.: Homeomorphisms of two-dimensional manifolds. Houston J. of Math. 11, 455–469 (1985)

    MATH  Google Scholar 

  13. Dancer E.N., Ortega R.: The index of Lyapunov stable fixed points in two dimensions. J. Dyn. Differ. Eqs. 6, 631 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawden D.K.: Elliptic functions and applications. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  15. Campos J., Torres P.: On the structure of the set of bounded solutions on a periodic Lienard equation. Proc. Amer. Math. Soc. 127, 1453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Opial Z.: Sur les intégrales bornees de l’equation u′′ = f (t, u, u′). Ann. Polonici Math. 4, 314–324 (1958)

    MathSciNet  MATH  Google Scholar 

  17. Bronski J.C., Carr L.D., Deconinck B., Kutz J.N., Promislow K.: Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E 63, 036612 (2001)

    Article  ADS  Google Scholar 

  18. Bronski J.C., Carr L.D., Carratero-Gonzalez R., Deconinck B., Kutz J.N., Promislow K.: Stability of attractive Bose-Einstein condensates in a periodic potential. Phys. Rev. E 64, 056615 (2001)

    Article  ADS  Google Scholar 

  19. Sulem C., Sulem P.: The nonlinear Schrödinger equation: Self-focusing and wave collapse. Springer, Berlin (2000)

    Google Scholar 

  20. Rybin A.V., Varzugin G.G., Lindberg M., Timonen J., Bullough R.K.: Similarity solutions and collapse in the attractive Gross-Pitaevskii equation. Phys. Rev. E 62, 6224 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Krasnosel’skii M.A., Burd V.Sh., Kolesov Yu.S.: Nonlinear almost periodic oscillations. John Wiley & Sons, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres.

Additional information

Communicated by P. Constantin

The work of PJT was supported by D.G.I. MTM2005-03483, Ministerio de Educación y Ciencia, Spain.

The work of VVK was supported by the Secretaria de Estado de Universidades e Investigación (Spain) under the grant SAB2005-0195 and by the FCT (Portugal) and European program FEDER under the grant POCI/FIS/56237/2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, P.J., Konotop, V.V. On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schrödinger Equation with a Periodic Potential. Commun. Math. Phys. 282, 1–9 (2008). https://doi.org/10.1007/s00220-008-0527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0527-0

Keywords

Navigation