Skip to main content
Log in

WZW Orientifolds and Finite Group Cohomology

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The simplest orientifolds of the WZW models are obtained by gauging a \({\mathbb{Z}_2}\) symmetry group generated by a combined involution of the target Lie group G and of the worldsheet. The action of the involution on the target is by a twisted inversion \({g\mapsto(\zeta g)^{-1}}\), where ζ is an element of the center of G. It reverses the sign of the Kalb-Ramond torsion field H given by a bi-invariant closed 3-form on G. The action on the worldsheet reverses its orientation. An unambiguous definition of Feynman amplitudes of the orientifold theory requires a choice of a gerbe with curvature H on the target group G, together with a so-called Jandl structure introduced in [31]. More generally, one may gauge orientifold symmetry groups \({\Gamma=\mathbb{Z}_2\times Z}\) that combine the \({\mathbb{Z}_2}\)-action described above with the target symmetry induced by a subgroup Z of the center of G. To define the orientifold theory in such a situation, one needs a gerbe on G with a Z-equivariant Jandl structure. We reduce the study of the existence of such structures and of their inequivalent choices to a problem in group-Γ cohomology that we solve for all simple simply connected compact Lie groups G and all orientifold groups \({\Gamma=\mathbb{Z} _2\times Z}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez O.: Topological quantization and cohomology. Commun. Math. Phys. 100, 279–309 (1985)

    Article  MATH  ADS  Google Scholar 

  2. Bachas C., Couchoud N., Windey P.: Orientifolds of the 3-sphere. JHEP 0112, 003 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics 87, New York: Springer-Verlag, 1982

  4. Brunner I.: On orientifolds of WZW models and their relation to geometry. JHEP 0201, 007 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brunner I., Hori K.: Notes on orientifolds of rational conformal field theories. JHEP 0407, 023 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Brylinski, J.-L.: Loop Spaces, Characteristic Classes, and Geometric Quantization. Progress in Mathematics 107, Boston: Birkhäuser, 1993

  7. Chatterjee, D.S.: On gerbs. Ph.D. thesis, Trinity College, Cambridge, 1998, available online at http://www2.maths.ox.ac.uk/hitchin/hitchinstudents/chatterjee.pdf, 1998

  8. Felder G., Gawędzki K., Kupiainen A.: Spectra of Wess–Zumino–Witten models with arbitrary simple groups. Commun. Math. Phys. 117, 127–158 (1988)

    Article  MATH  ADS  Google Scholar 

  9. Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: Topological and conformal field theory as Frobenius algebras. In: Contemp. Math. 431, Providence RI: Amer. Math. Soc., 2007, pp. 225–248

  10. Fuchs J., Huiszoon L.R., Schellekens A.N., Schweigert C., Walcher J.: Boundaries, crosscaps and simple currents. Phys. Lett. B495, 427–434 (2000)

    ADS  MathSciNet  Google Scholar 

  11. Gajer P.: Geometry of Deligne cohomology. Invent. Math. 127, 155–207 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gawȩdzki, K.: Topological actions in two-dimensional quantum field theory. In: ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds.), Non-perturbative Quantum Field Theory. Proceedings, Cargèse 1987, New York: Plenum Press, 1988, pp. 101–142

  13. Gawȩdzki K.: Abelian and non-Abelian branes in WZW models and gerbes. Commun. Math. Phys. 258, 23–73 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gawȩdzki K., Reis N.: WZW branes and gerbes. Rev. Math. Phys. 14, 1281–1334 (2002)

    Article  MathSciNet  Google Scholar 

  15. Gawȩdzki K., Reis N.: Basic gerbe over non simply connected compact groups. J. Geom. Phys. 50, 28–55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gaw̧dzki, K., Suszek, R.R., Waldorf, K.: In preparation

  17. Huiszoon L.R., Schellekens A.N.: Crosscaps, boundaries and T-duality. Nucl. Phys. B584, 705–718 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Huiszoon L.R., Schellekens A.N., Sousa N.: Klein bottles and simple currents. Phys. Lett. B470, 95–102 (1999)

    ADS  MathSciNet  Google Scholar 

  19. Huiszoon L.R., Schellekens A.N., Sousa N.: Open descendants of non-diagonal invariants. Nucl. Phys. B575, 401–415 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kapustin A.: D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys. 4, 127–154 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Lupercio E., Uribe B.: An introduction to gerbes on orbifolds. Annales Math. Blaise Pascal 11, 155–180 (2004)

    MATH  MathSciNet  Google Scholar 

  22. McCleary, J.: A User’s Guide to Spectral Sequences. Cambridge Studies in Advanced Mathematics 58, Cambridge: Cambridge University Press, 2001

  23. Meinrenken E.: The basic gerbe over a compact simple Lie group. L’Enseignement Mathématique 49, 307–333 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Murray M.K.: Bundle gerbes. J. London Math. Soc. (2) 54, 403–416 (1996)

    MATH  MathSciNet  Google Scholar 

  25. Murray M.K., Stevenson D.: Bundle gerbes: stable isomorphisms and local theory. J. London Math. Soc. (2) 62, 925–937 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pradisi, G., Sagnotti, A.: New developments in open-string theories. http://arXiv.org/abs/hep-th/9211084, 1992

  27. Pradisi G., Sagnotti A., Stanev Y.: Planar duality in SU(2) WZW models. Phys. Lett. B354, 279–286 (1995)

    ADS  MathSciNet  Google Scholar 

  28. Pradisi G., Sagnotti A., Stanev Y.: The open descendants of nondiagonal SU(2) WZW models. Phys. Lett. B356, 230–238 (1995)

    ADS  MathSciNet  Google Scholar 

  29. Reis, N.: Interprétation géométrique des théories conformes des champs à bord. Ph.D. thesis, école Normale Supérieure de Lyon, 2003

  30. Sah C.-H.: Cohomology of split group extensions. J. Algebra 29, 255–302 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schreiber U., Schweigert C., Waldorf K.: Unoriented WZW models and holonomy of bundle gerbes. Commun. Math. Phys. 274, 31–64 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Schwarz J.H.: Superstring theory. Phys. Rept. 89, 223–322 (1982)

    Article  MATH  ADS  Google Scholar 

  33. Vafa C.: Modular invariance and discrete torsion on orbifolds. Nucl. Phys. B273, 592–606 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  34. Weibel, C.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge: Cambridge University Press, 1995

  35. Witten E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys. 92, 455–472 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Gawȩdzki.

Additional information

Communicated by M. R. Douglas

Membre du C.N.R.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawȩdzki, K., Suszek, R.R. & Waldorf, K. WZW Orientifolds and Finite Group Cohomology. Commun. Math. Phys. 284, 1–49 (2008). https://doi.org/10.1007/s00220-008-0525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0525-2

Keywords

Navigation