Advertisement

Communications in Mathematical Physics

, Volume 283, Issue 3, pp 749–768 | Cite as

Uniqueness Theorem for 5-Dimensional Black Holes with Two Axial Killing Fields

  • Stefan HollandsEmail author
  • Stoytcho Yazadjiev
Article

Abstract

We show that two stationary, asymptotically flat vacuum black holes in 5 dimensions with two commuting axial symmetries are identical if and only if their masses, angular momenta, and their “interval structures” coincide. We also show that the horizon must be topologically either a 3-sphere, a ring, or a Lens-space. Our argument is a generalization of constructions of Morisawa and Ida (based in turn on key work of Maison) who considered the spherical case, combined with basic arguments concerning the nature of the factor manifold of symmetry orbits.

Keywords

Black Hole Black Hole Solution Isometry Group Orbit Space Tubular Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W. H. Freeman, New York (1994)zbMATHGoogle Scholar
  2. 2.
    Bunting, G.L.: Proof of the uniqueness conjecture for black holes. PhD Thesis, Univ. of New England, Armidale, N.S.W., 1983Google Scholar
  3. 3.
    Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)CrossRefADSGoogle Scholar
  4. 4.
    Cho Y.M., Freund P.G.O.: Non-Abelian gauge fields as Nambu-Goldstone fields. Phys. Rev. D 12, 1711 (1975)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Chruściel P.T.: On rigidity of analytic black holes. Commun. Math. Phys. 189, 1–7 (1997)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Emparan R., Reall H.S.: A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101 (2002)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Emparan R., Reall H.S.: Generalized Weyl solutions. Phys. Rev. D 65, 084025 (2002)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Friedrich H., Racz I., Wald R.M.: On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon, Commun. Math. Phys. 204, 691–707 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological censorship and higher genus black holes. Phys. Rev. D 60, 104039 (1999)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Galloway G.J., Schleich K., Witt D., Woolgar E.: The AdS/CFT correspondence conjecture and topological censorship. Phys. Lett. B 505, 255 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Galloway G.J., Schoen R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and non-uniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89, 041101 (2002)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Harmark T., Olesen P.: On the structure of stationary and axisymmetric metrics. Phys. Rev. D 72, 124017 (2005)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Harmark T.: Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70, 124002 (2004)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Hawking S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)zbMATHGoogle Scholar
  17. 17.
    Heusler M.: Black hole uniqueness theorems. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  18. 18.
    Hollands S., Ishibashi A., Wald R.M.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Hollands S., Ishibashi A.: Asymptotic flatness and Bondi energy in higher dimensional gravity. J. Math. Phys. 46, 022503 (2005)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Hollands, S., Yazadjiev, S., Work in progressGoogle Scholar
  21. 21.
    Ishihara H., Kimura M., Masuno K., Tomizawa S.: Black holes on Euguchi-Hanson space in five-dimensional Einstein Maxwell theory. Phys. Rev. D 74, 047501 (2006)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)CrossRefADSGoogle Scholar
  23. 23.
    Kerner R.: Generalization of Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. H. Poincare 9, 143 (1968)MathSciNetGoogle Scholar
  24. 24.
    Kobayshi S., Nomizu K.: Foundations of Differential Geometry I. Wiley, New York (1969)Google Scholar
  25. 25.
    Maison D.: Ehlers-Harrison-type Transformations for Jordan’s extended theory of graviation. Gen. Rel. Grav. 10, 717 (1979)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Morisawa Y., Ida D.: A boundary value problem for five-dimensional stationary black holes, Phys. Rev. D 69, 124005 (2004)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Mazur P.O.: Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 15, 3173–3180 (1982)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Moncrief V., Isenberg J.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89, 387–413 (1983)zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Myers R.C., Perry M.J.: Black holes in higher dimensional space-times. Annals Phys. 172, 304 (1986)zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Racz I.: On further generalization of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Class. Quant. Grav. 17, 153 (2000)zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Robinson D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)CrossRefADSGoogle Scholar
  32. 32.
    Sudarsky D., Wald R.M.: Extrema of mass, stationarity, and staticity, and solutions to the Einstein Yang-Mills equations. Phys. Rev. D 46, 1453–1474 (1992)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)zbMATHGoogle Scholar
  34. 34.
    Weinstein G.: On rotating black holes in equilibrium in general relativity. Commun. Pure Appl. Math. 43, 903 (1990)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of MathematicsCardiff UniversityWalesUK
  2. 2.Department of Theoretical Physics, Faculty of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations