Skip to main content
Log in

Minimizing the Ground State Energy of an Electron in a Randomly Deformed Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a characterization of the spectral minimum for a random Schrödinger operator of the form \({H = -\Delta + \sum_{i \in \mathbb{Z}^d}q(x - i - \omega_i)}\) in \({L^2(\mathbb{R}^d)}\) , where the single site potential q is reflection symmetric, compactly supported in the unit cube centered at 0, and the displacement parameters ω i are restricted so that adjacent single site potentials do not overlap. In particular, we show that a minimizing configuration of the displacements is given by a periodic pattern of densest possible 2d-clusters of single site potentials.

The main tool to prove this is a quite general phenomenon in the spectral theory of Neumann problems, which we dub “bubbles tend to the boundary.” How should a given compactly supported potential be placed into a bounded domain so as to minimize or maximize the first Neumann eigenvalue of the Schrödinger operator on this domain? For square or rectangular domains and reflection symmetric potentials, we show that the first Neumann eigenvalue is minimized when the potential sits in one of the corners of the domain and is maximized when it sits in the center of the domain. With different methods we also show a corresponding result for smooth strictly convex domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando K., Iwatsuka A., Kaminaga M., Nakano F.: The spectrum of Schrödinger operators with Poisson type random potential. Ann. Henri Poincaré 7, 145–160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bourgain J., Kenig C.: On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math. 161, 389–426 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Buschmann D., Stolz G.: Two-Parameter Spectral Averaging and Localization for Non-Monotonic Random Schrödinger Operators. Trans. Amer. Math. Soc. 353, 635–653 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carmona R., Lacroix J.: Sprectral Theory of Random Schrödinger operators. Birkhäuser, Basel (1990)

    Google Scholar 

  5. Damanik D., Sims R., Stolz G.: Localization for one-dimensional, continuum, Bernoulli-Anderson models. Duke Math. J. 114, 59–100 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edmunds D.E., Evans W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, Providence, RI: Amer. Math. Soc., 1998

  8. Freericks J.K., Lieb E.H., Ueltschi D.: Segregation in the Falicov-Kimball model. Commun. Math. Phys. 227, 243–279 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Germinet F., Hislop P., Klein A.: Localization for Schrödinger operators with Poisson random potential. J. Eur. Math. Soc. 9, 577–607 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Germinet, F., Hislop, P., Klein, A.: Localization at low energies for attractive Poisson random Schrödinger operators. In: Probability and Mathematical Physics, CRM Proceedings and Lecture Notes, Vol. 42, Amer. Math. Soc., 2007, pp. 153–165

  11. Harrell E.M., Kroger P., Kurata K.: On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33, 240–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hersch J.: The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math. 13, 1229–1238 (1963)

    MATH  MathSciNet  Google Scholar 

  13. Kennedy T., Lieb E.H.: An itinerant electron model with crystalline or magnetic long range order. Phys. A 138, 320–358 (1986)

    Article  MathSciNet  Google Scholar 

  14. Kirsch, W., Metzger, B.: The integrated density of states for random Schrödinger operators. In: Spectral Theory and Mathematical Physics, Proceedings of Symposia in Pure Mathematics, Vol. 76, Part 2, Providence, Amer. Math. Soc., 2007, pp. 649–696

  15. Klopp F.: Localization for semiclassical continuous random Schrödinger operators. II. The random displacement model. Helv. Phys. Acta 66, 810–841 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Kolokolnikov T., Titcombe M.S., Ward M.J.: Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Eur. J. Appl. Math. 16, 161–200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lott J., Stolz G.: The spectral minimum for random displacement models. J. Comput. Appl. Math. 148, 133–146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Najar H.: The spectrum minimum for random Schrödinger operators with indefinite sign potentials. J. Math. Phys. 47, 013515 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer-Verlag, New York (1984)

    MATH  Google Scholar 

  20. Reed M., Simon B.: Methods of Modern Mathematical Physics IV, Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  21. Simon B.: Trace Ideals and their Applications. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  22. Stollmann, P.: Caught by Disorder. Bound states in Random Media. Progress in Mathematical Physics, Vol. 20, Boston: Birkhauser, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Stolz.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, J., Loss, M. & Stolz, G. Minimizing the Ground State Energy of an Electron in a Randomly Deformed Lattice. Commun. Math. Phys. 283, 397–415 (2008). https://doi.org/10.1007/s00220-008-0507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0507-4

Keywords

Navigation