Advertisement

Communications in Mathematical Physics

, Volume 283, Issue 3, pp 613–646 | Cite as

Spectral Theory for the Standard Model of Non-Relativistic QED

  • J. Fröhlich
  • M. GriesemerEmail author
  • I. M. Sigal
Article

Abstract

For a model of atoms and molecules made from static nuclei and non-relativistic electrons coupled to the quantized radiation field (the standard model of non-relativistic QED), we prove a Mourre estimate and a limiting absorption principle in a neighborhood of the ground state energy. As corollaries we derive local decay estimates for the photon dynamics, and we prove absence of (excited) eigenvalues and absolute continuity of the energy spectrum near the ground state energy, a region of the spectrum not understood in previous investigations. The conjugate operator in our Mourre estimate is the second quantized generator of dilatations on Fock space.

Keywords

Spectral Theory Ground State Energy Absolute Continuity Virial Theorem Ionization Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0 -groups, commutator methods and spectral theory for N-body Hamiltonians. Vol. 135 of Progress in Mathematics. Basel-Boston: Birkhäuser, 1996Google Scholar
  2. 2.
    Arai A.: Rigorous theory of spectra and radiation for a model in quantum electrodynamics. J. Math. Phys. 24(7), 1896–1910 (1983)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bach V., Fröhlich J., Pizzo A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264(1), 145–165 (2006)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Bach V., Fröhlich J., Sigal I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137(2), 299–395 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bach V., Fröhlich J., Sigal I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137(2), 205–298 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bach V., Fröhlich J., Sigal I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249–290 (1999)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Bach V., Fröhlich J., Sigal I.M., Soffer A.: Positive commutators and the spectrum of Pauli-Fierz Hamiltonian of atoms and molecules. Commun. Math. Phys. 207(3), 557–587 (1999)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Davies E.B.: The functional calculus. J. London Math. Soc. (2) 52(1), 166–176 (1995)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Dereziński J., Jakšić V.: Spectral theory of Pauli-Fierz operators. J. Funct. Anal. 180(2), 243–327 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fröhlich J., Griesemer M., Schlein B.: Asymptotic electromagnetic fields in models of quantum-mechanical matter interacting with the quantized radiation field. Adv. Math. 164(2), 349–398 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fröhlich J., Griesemer M., Schlein B.: Asymptotic completeness for Rayleigh scattering. Ann. Henri Poincaré 3(1), 107–170 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Fröhlich J., Griesemer M., Schlein B.: Asymptotic completeness for Compton scattering. Commun. Math. Phys. 252(1–3), 415–476 (2004)zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Georgescu V., Gérard C., Møller J.S.: Spectral theory of massless Pauli-Fierz models. Commun. Math. Phys. 249(1), 29–78 (2004)zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Gérard C.: On the scattering theory of massless Nelson models. Rev. Math. Phys. 14(11), 1165–1280 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Griesemer M.: Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics. J. Funct. Anal. 210(2), 321–340 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Griesemer M., Lieb E.H., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(3), 557–595 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. In: Schrödinger operators (Sønderborg, 1988), Volume 345 of Lecture Notes in Phys., Berlin: Springer, 1989, pp. 118–197Google Scholar
  18. 18.
    Hiroshima F.: Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary values of coupling constants. Ann. Henri Poincaré 3(1), 171–201 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hübner M., Spohn H.: Spectral properties of the spin-boson Hamiltonian. Ann. Inst. H. Poincaré Phys. Théor. 62(3), 289–323 (1995)zbMATHGoogle Scholar
  20. 20.
    Lieb E.H., Loss M.: Existence of atoms and molecules in non-relativistic quantum electrodynamics. Adv. Theor. Math. Phys. 7(4), 667–710 (2003)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975Google Scholar
  22. 22.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978Google Scholar
  23. 23.
    Sahbani J.: The conjugate operator method for locally regular Hamiltonians. J. Operator Theory 38(2), 297–322 (1997)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Skibsted E.: Spectral analysis of N-body systems coupled to a bosonic field. Rev. Math. Phys. 10(7), 989–1026 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Spohn H.: Asymptotic completeness for Rayleigh scattering. J. Math. Phys. 38(5), 2281–2296 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Spohn H.: Dynamics of charged particles and their radiation field. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Theoretical PhysicsETH–HönggerbergZürichSwitzerland
  2. 2.Department of MathematicsUniversity of StuttgartStuttgartGermany
  3. 3.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations