Skip to main content
Log in

Unstable Surface Waves in Running Water

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 06 February 2013

Abstract

We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that the free surface has a destabilizing effect. For a class of unstable shear flows, the bifurcation of nontrivial periodic traveling waves is demonstrated at all wave numbers. We show the linear instability of small nontrivial waves that appear after bifurcation at an unstable wave number of the background shear flow. The proof uses a new formulation of the linearized water-wave problem and a perturbation argument. An example of the background shear flow of unstable small-amplitude periodic traveling waves is constructed for an arbitrary vorticity strength and for an arbitrary depth, illustrating that vorticity has a subtle influence on the stability of free-surface water waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Agranovich, M.S.: Elliptic boundary problems, Partial Differential equations IX, Encyclopaedia of Math. Sci., 79, Berlin-Heidelberg-New York: Springer-Verlag, 1997, pp. 1–132

  3. Arnold V.I.: On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid. Dokl. Akad. Nauk SSSR 162, 975–978 (1965)

    MathSciNet  Google Scholar 

  4. Arnold V.I.: Mathematical Methods of Classical Mechanics. Second Edition, Springer-Verlag, New York (1989)

    Book  Google Scholar 

  5. Amick C., Fraenkel L.E., Toland J.F.: On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angulo Pava J., Bona J.L., Scialom M.: Stability of cnoidal waves. Adv. Differ. Eqs. 12, 1321–1374 (2006)

    MathSciNet  Google Scholar 

  7. Balmforth N.J., Morrison P.J.: A necessary and sufficient instability condition for inviscid shear flow. Studies in Appl. Math. 102, 309–344 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bona J.L., Sachs R.L.: The existence of internal solitary waves in a two-fluid system near the KdV limit. Geophys. Astrophys. Fluid Dyn. 48(1–3), 25–51 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Barcilon A., Drazin P.G.: Nonlinear waves of vorticity. Stud. Appl. Math. 106(4), 437–479 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benjamin T.B.: The stability of solitary waves. Proc. Royal Soc. London Ser. A 338, 153–183 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  11. Benjamin T.B., Feir J.E.: Disintegration of wave trains on deep water. J. Fluid. Mech. 27, 417–437 (1967)

    Article  ADS  MATH  Google Scholar 

  12. Bridges T.J., Mielke A.: A proof of the Benjamin-Feir instabillity. Arch. Rational Mech. Anal. 133, 145–198 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Buffoni B, Séré É., Toland J.F.: Surface water waves as saddle points of the energy. Calculus of Variations and Partial Differ. Eqs. 17, 199–220 (2003)

    Article  MATH  Google Scholar 

  14. Buffoni B., Toland J.F.: Analytic theory of global bifurcation: an introduction. Princeton University Press, Princeton NJ (2003)

    MATH  Google Scholar 

  15. Burns J.C.: Long waves in running water. Proc. Camb. Phil. Soc. 49, 695–706 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Constantin A.: The trajectories of particle in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Constantin A., Sattinger D., Strauss W.: Variational formulations for steady water waves with vorticity. J. Fluid Mech. 548, 151–163 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  18. Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Constantin A., Strauss W.: Stability properties of steady water waves with vorticity. Comm. Pure Appl. Math. 60, 911–950 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Constantin A., Strauss W.: Rotational steady water waves near stagnation. Phil. Trans. Roy. Soc. London A 365, 2227–2239 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Crandall M.G., Rabinowitz P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rat. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crapper G.D.: Introduction to water waves. Ellis Horwood Series: Mathematics and Its Applications. Halsted Press, Chichester: Ellis Horwood/New York (1984)

    Google Scholar 

  23. Drazin P.G., Reid W.H.: Hydrodynamic Stability. Cambridge Monographs on Mechanics and Appl. Math. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  24. Drazin P.G., Howard L.N.: Hydrodynamic stability of parallel fluid of an inviscid fluid. Adv. Appl. Math. 9, 1–89 (1966)

    Google Scholar 

  25. Dubreil-Jacotin M.-L.: Sur la dérmination rigoureuse des ondes permanentes péiodiquesd’ampleur finie. J. Math. Pures Appl. 13, 217–291 (1934)

    MATH  Google Scholar 

  26. Friedlander S., Howard L.N.: Instability in paralel flow revisited. Stud. Appl. Math. 101, 1–21 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  28. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics 19, Providence RI: Amer. Math. Soc., 1998

  29. Garabedian P.R.: Surface waves of finite depth. J. d’Anal. Math. 14, 161–169 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo Y., Strauss W.: Instability of periodic BGK equilibria. Comm. Pure. Appl. Math. 48, 861–894 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hartman, P.: Ordinary differential equations. Reprint of the second edition. Birkhäser, Boston, MA (1982)

    Google Scholar 

  32. Hur V.M.: Global bifurcation of deep-water waves. SIAM J. Math. Anal. 37, 1482–1521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hur V.M.: Exact solitary water waves with vorticity. Arch. Rat. Mech. Anal. 188, 213–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Keady G., Norbury J.: On the existence theory for irrotational water waves. Math. Proc. Cambridge Philos. Soc. 83, 137–157 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Krasovskii J.: On the theory of steady-state waves of finite amplitude. USSR Comput. Math. and Math. Phys. 1, 996–1018 (1962)

    Article  Google Scholar 

  36. Levi-Civita T.: Determinazione rigorosa delle onde irrotazionali periodiche in acqua profonda. Rendus Accad. Lincei 33, 141–150 (1924)

    MATH  Google Scholar 

  37. Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  38. Lin C.C.: The theory of hydrodynamic stability. Cambridge University Press, Cambridge (1955)

    MATH  Google Scholar 

  39. Lin Z.-W.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35, 318–356 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin Z.-W.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)

    Article  Google Scholar 

  41. Lin Z.-W.: Some stability and instability criteria for ideal plane flows. Commun. Math. Phys. 246, 87–112 (2004)

    Article  ADS  MATH  Google Scholar 

  42. Lin, Z.-W.: Some recent results on instability of ideal plane flows. In: Nonlinear partial differential equations and related analysis, Contemp. Math., 371, Providence, RI: Amer. Math. Soc. 2005, pp. 217–229

  43. Lin, Z.-W.: Instability of large solitary water waves. http://arxiv.org/abs/0803.0339, 2008

  44. Lin, Z.-W.: Instability of large Stokes waves. In preparation

  45. Mackay R.S., Saffman P.G.: Stability of water waves. Proc. Roy. Soc. London Ser. A 496, 115–125 (1986)

    MathSciNet  ADS  Google Scholar 

  46. McLeod, J.B.: The Stokes and Krasovskii conjectures for the wave of greatest height. University of Wisconsin Mathematics Research Center Report 2041, 1979

  47. Mielk, A.: On the energetic stability of solitary water waves. In: Recent developments in the mathematical theory of water waves (Oberwolfach, 2001). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (1799), 2337–2358 (2002)

  48. Longuet-Higgins M.S.: The instabilities of gravity waves of finite amplitude in deep water. I. Superharmonics. Proc. Roy. Soc. London Ser. A 360(1703), 471–488 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Longuet-Higgins M.S., Dommermuth D.G.: Crest instabilities of gravity waves. III. Nonlinear development and breaking. J. Fluid Mech. 336, 33–50 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nekrasov, A.I.: On steady waves. Izv. Ivanovo-Voznesenk. Politekhn. 3 (1921)

  51. Steinberg, S.: Meromorphic families of compact operators. Arch. Rat. Mech. Anal. 31 pp. 372–379 (1968/1969)

  52. Rayleigh L.: On the stability or instability of certain fluid motions. Proc. London Math. Soc. 9, 57–70 (1880)

    MathSciNet  Google Scholar 

  53. Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotatioanl waves which can be propagated without change of form, Mathematical and physical papers 1, 1880, Cambridge, pp. 225–228

  54. Struik D.: Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie. Math. Ann. 95, 595–634 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tanaka M.: The stability of steep gravity waves. J. Phys. Soc. Japan 52, 3047–3055 (1983)

    Article  ADS  Google Scholar 

  56. Ter-Krikorov, A.M.: A solitary wave on the surface of a turbulent liquid. (Russian) Zh. Vydisl. Mat. Fiz. 1, 1077–1088 1961. Translated in U.S.S.R. Comput. Math. and Math. Phys. 1, 1253–1264 (1962)

  57. Thomas, G., Klopman, G.: Wave-current interactions in the nearshore region. In: Gravity waves in water of finite depth, Advances in fluid mechanics, 10, Southampton, United Kingdom, 1997, pp. 215–319

  58. Toland J.F.: On the existence of a wave of greatest height and Stokes’s conjecture. Proc. Roy. Soc. London Ser. A 363(1715), 469–485 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  60. Varvaruca, E.: On some properties of traveling water waves with vorticity. Siam. J. Math. Anal. 39, 1686–1692

  61. Wahlen E.: A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79, 303–315 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Yih C.-S.: Surface waves in flowing water. J. Fluid. Mech. 51, 209–220 (1972)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Mikyoung Hur.

Additional information

Communicated by P. Constantin

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00220-013-1660-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hur, V.M., Lin, Z. Unstable Surface Waves in Running Water. Commun. Math. Phys. 282, 733–796 (2008). https://doi.org/10.1007/s00220-008-0505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0505-6

Keywords

Navigation