Skip to main content
Log in

Fluctuation Relations for Diffusion Processes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper presents a unified approach to different fluctuation relations for classical nonequilibrium dynamics described by diffusion processes. Such relations compare the statistics of fluctuations of the entropy production or work in the original process to the similar statistics in the time-reversed process. The origin of a variety of fluctuation relations is traced to the use of different time reversals. It is also shown how the application of the presented approach to the tangent process describing the joint evolution of infinitesimally close trajectories of the original process leads to a multiplicative extension of the fluctuation relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balkovsky, E., Falkovich, G., Fouxon, A.: Clustering of inertial particles in turbulent flows, http://arxiv.org/abs/chao-dyn/9912027 and Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 2790–2793 (2001)

    Google Scholar 

  2. Bandi, M.M., Cressman Jr., J.R., Goldburg, W.I.: Test of the Fluctuation Relation in lagrangian turbulence on a free surface. http://arxiv.org/abs/0607037, 2006

  3. Bec J.: Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255–277 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bochkov, G.N., Kuzovlev, Yu.E.: On general theory of thermal fluctuations in nonlinear systems. Sov. Phys. JETP 45, 125–130 (1977); Zh. Eksp. Teor. Fiz. 72, 238 (1977)

    Google Scholar 

  5. Bochkov, G.N., Kuzovlev, Yu.E.: Fluctuation-dissipation relations for nonequilibrium processes in open systems. Sov. Phys. JETP 49, 543 (1979); Zh. Eksp. Teor. Fiz. 76, 1071 (1979)

    Google Scholar 

  6. Bochkov, G.N., Kuzovlev, Yu.E.: Non-linear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics. I and II. Physica A 106, 443–479 and 480–520 (1981)

  7. Bonetto F., Gallavotti G., Garrido P.L.: Chaotic principle: An experimental test. Physica D 105, 226–252 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bonetto F., Gallavotti G., Gentile G.: A fluctuation theorem in a random environment. Eng. Dynam. Sys. 28, 21–47 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Bonetto F., Gallavotti G., Giuliani A., Zamponi F.: Chaotic Hypothesis, Fluctuation Theorem and singularities. J. stat. Phys. 123, 39 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. (2006) P08001

  11. Chetrite R., Delannoy J.-Y., Gawȩdzki K.: Kraichnan flow in a square: an example of integrable chaos. J. Stat. Phys. 126, 1165–1200 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Chetrite, R., Falkovich, G., Gawȩdzki, K.: In preparation

  13. Chetrite, R., Horvai, P., Gawȩdzki, K.: In preparation

  14. Ciliberto, S.: Experimental analysis of aging. In: Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter. eds. Barrat, J.-L. et al., Les Houches Summer School, vol. 77, Basel: Brkhäuser, 2003, pp. 555–604

  15. Ciliberto S., Laroche C.: An experimental test of the Gallavotti-Cohen fluctuation theorem. J. de Phys. IV 8, 215 (1998)

    Google Scholar 

  16. Cohen E.G.D., Gallavotti G.: Note on two theorems in nonequilibrium statistical mechanics. J. Stat. Phys. 96, 1343–1349 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Collin D., Ritort F., Jarzynski C., Smith S.B., Tinoco I., Bustamante C.: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005)

    Article  ADS  Google Scholar 

  18. Crooks G.E.: The entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999)

    ADS  Google Scholar 

  19. Crooks G.E.: Path ensembles averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)

    ADS  Google Scholar 

  20. Cugliandolo L.F., Kurchan J., Peliti L.: Energy flow, partial equilibration and effective temperature in systems with slow dynamics. Phys. Rev. E 55, 3898–3914 (1997)

    ADS  Google Scholar 

  21. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven hamiltonian systems. J. Stat. Phys. 95, 305–331 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 and 3616 (1993)

    Google Scholar 

  24. Evans D.J., Morriss G.P.: Statistical Mechanics of NonEquilibrium Liquids. London: Academic Press, 1990

    Google Scholar 

  25. Evans D.J., Searles D.J.: Equlibrium microstates which generate the second law violating steady states. Phys. Rev. E 50, 1645 (1994)

    ADS  Google Scholar 

  26. Evans D.J., Searles D.J.: The fluctuation theorem. Adv. in Phys. 51, 1529–1585 (2002)

    Article  ADS  Google Scholar 

  27. Eyink, G.L., Lebowitz, J.L., Spohn, H.: Microscopic origin of hydrodynamic behavior: entropy production and the steady state. In: Chaos, Soviet-American Perspectives in Nonlinear Science, ed. D.K. Campbell, Melville, NY: American Institute of Physics, 1990, pp. 367–397

  28. Falkovich, G.: Private communication

  29. Falkovich G., Gawȩdzki K., Vergassola M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. Fouxon, I., Horvai, P.: Fluctuation relation and pairing rule for Lyapunov exponents of inertial particles in turbulence. http://arxiv.org/abs/0705.0073, 2007

  31. Gallavotti G.: Fluctuation patterns and conditional reversibility in nonequilibrium systems. Ann. Inst. H. Poincaré 70, 429 (1999)

    MATH  MathSciNet  Google Scholar 

  32. Gallavotti G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Gallavotti G.: Fluctuation relation, fluctuation theorem, thermostats and entropy creation in non equilibrium statistical physics. CR-Physique 8, 486–494 (2007)

    Article  ADS  Google Scholar 

  34. Gallavotti G., Bonetto F., Gentile G.: Aspects of the Ergodic, Qualitative and Statistical Theory of Motion. Berlin: Springer, 2004

    MATH  Google Scholar 

  35. Gallavotti G., Cohen E.D.G.: Dynamical ensembles in non-equilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    Article  ADS  Google Scholar 

  36. Gallavotti G., Cohen E.D.G.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Garnier, N., Ciliberto, S.: Nonequilibrium fluctuations in a resistor. Phys. Rev. E 71, 060101(R)/1-4 (2005)

    Google Scholar 

  38. Giuliani A., Zamponi F., Gallavotti G.: Fluctuation relation beyond linear response theory. J. Stat. Phys. 119, 909–944 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Gaspard P.: Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys. 117, 599–615 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Gawȩdzki, K.: Soluble models of turbulent transport. Warwick lecture notes, 2006

  41. Halperin B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139, A104–A117 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  42. Hashminski, R.Z.: Stochastic Stability of Differential Equations. Alphen, Sijthoff and Noordhoff, 1980

  43. Hatano T., Sasa S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001)

    Article  ADS  Google Scholar 

  44. Hayashi K., Sasa S.: Linear response theory in stochastic many-body systems revisited. Physica A 370, 407–429 (2006)

    ADS  Google Scholar 

  45. Hendrix D.A., Jarzynski C.: A “fast growth” method of computing free energy differences. J. Chem. Phys. 114, 5974–5981 (2001)

    Article  ADS  Google Scholar 

  46. Hohenberg B.C., Halperin B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  ADS  Google Scholar 

  47. Imparato, A., Peliti, L., Pesce, G., Rusciano, G., Sasso, A.: Work and heat probability distribution of an optically driven Brownian particle: Theory and experiments. Phys. Rev. E 76, 050101R (2007)

  48. Jarzynski C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    Article  ADS  Google Scholar 

  49. Jarzynski C.: Equilibrium free energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56, 5018 (1997)

    ADS  Google Scholar 

  50. Jarzynski C.: Equilibrium Free Energies from Nonequilibrium Processes. Acta Phys. Polonica B 29, 1609 (1998)

    ADS  Google Scholar 

  51. Jarzynski C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. Jarzynski, C.: Comparison of far-from-equilibrium work relations. http://arxiv.org/abs/0612305, 2006

  53. Joubaud S., Garnier N., Ciliberto S.: Fluctuation theorems for harmonic oscillators. J. Stat. Math: Theorey and Exp. 09, P09018 (2007)

    Article  Google Scholar 

  54. Joubaud, S., Garnier, N., Douarche, F., Petrosyan, A., Ciliberto, S.: Experimental study of work fluctuations in a harmonic oscillator. http://arxiv.org/abs/0703695, 2007

  55. Kunita H.: Stochastic Flows and Stochastic Differential Equations. Cambridge: Cambridge University Press, 1990

    MATH  Google Scholar 

  56. Kurchan J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719 (1998)

    ADS  MathSciNet  Google Scholar 

  57. Kurchan, J.: Non-equilibrium work relations. http://arxiv.org/abs/0511073, 2005

  58. Lebowitz J.L., Spohn H.: Stationary non-equilibrium states of infinite harmonic systems. Commun. Math. Phys. 54, 97–120 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  59. Lebowitz J., Spohn H.: A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  60. Le Jan, Y., Raimond, O.: Integration of Brownian vector fields. Ann. Probab. 30 (2002), 826–873, and Flows, coalescence and noise. Ann. Probab. 32, 1247–1315 (2004)

  61. Lifshitz I.M., Gredeskul S., Pastur L.: Introduction to the Theory of Disordered Systems. New York: Wiley, 1988

    Google Scholar 

  62. Kraichnan R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–963 (1968)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. Maes C.: The Fluctuation Theorem as a Gibbs Property. J. Stat. Phys. 95, 367–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  64. Maes C.: On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré 2, 29–62 (2003)

    Google Scholar 

  65. Maes C., Natočný K.: Time reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)

    Article  MATH  Google Scholar 

  66. Maes, C., Natočný, K., Wynants, B.: Steady state statistics of driven diffusions. http://arxiv.org/abs/0708.0489, 2007

  67. Oksendal, B.: Stochastic Differential Equations, 6th ed. Universitext, Berlin, Springer, 2003

  68. Oono Y., Paniconi M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  69. Parisi G., Sourlas N.: Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B 206, 321–331 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  70. Puglisi, A., Rondoni, L., Vulpiani, A.: Relevance of initial and final conditions for the Fluctuation Relation in Markov processes. J. Stat. Mech. (2006) P08010/1-22

  71. Risken H.: The Fokker Planck Equation. Springer, Berlin (1989)

    MATH  Google Scholar 

  72. Ritort F.: Work fluctuations and transient violations of the Second Law: perspectives in theory and experiments. Séminaire Poincaré 2, 63–87 (2003)

    Google Scholar 

  73. Ritort, F.: Nonequilibrium fluctuations in small systems: From physics to biology. http://arxiv.org/abs/0705.0455, to appear in Advances in Chemical Physics, Vol. 137, Wiley & Sons

  74. Ruelle D.: Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  75. Ruelle D.: Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics, 2nd Edition. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  76. Searles D.J., Evans D.J.: Fluctuation theorem for stochastic systems. Phys. Rev. E 60, 159–164 (1999)

    ADS  Google Scholar 

  77. Searles D.J., Rondoni L., Evans D.J.: The steady state fluctuation relation for the dissipation function. J. Stat. Phys. 128, 1337–1363 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. Speck T., Seifert U.: Integral fluctuation theorem for the housekeeping heat. J. Phys. A: Math. Gen. 38, L581–L588 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. Stroock D., Varadhan, S. R. S.: Multidimensional Diffusion Processes. Berlin: Springer, 1979

    MATH  Google Scholar 

  80. Tailleur J., Tanase-Nicola S., Kurchan J.: Kramers equation and supersymmetry. J. Stat. Phys. 122, 557–595 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  81. Turitsyn K., Chertkov M., Chernyak V.Y., Puliafito A.: Statistics of entropy production in linearized stochastic system. Phys. Rev. Lett. 98, 180603/1–14 (2007)

    Article  ADS  Google Scholar 

  82. Young L.-S.: What are SRB measures, and which dynamical systems have them. J. Stat. Phys. 108, 733–754 (2002)

    Article  MATH  Google Scholar 

  83. van Zon R., Cohen E.G.D.: Extension of the Fluctuation Theorem. Phys Rev. Lett. 91, 110601/1–4 (2003)

    Google Scholar 

  84. Wilkinson M., Mehlig B.: The path-coalescence transition and its applications. Phys. Rev. E 68, 040101/1–4 (2003)

    Article  ADS  Google Scholar 

  85. Witten E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)

    MATH  MathSciNet  Google Scholar 

  86. Williams S.R., Searles D.J., Evans D.J.: Numerical study of the steady state fluctuation relations far from equilibrium. J. Chem. Phys. 124, 194102/1–9 (2006)

    Article  ADS  Google Scholar 

  87. Zwanzig R.: Nonequilibrium Statistical Mechanics. Oxford: Oxford University Press, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Gawȩdzki.

Additional information

Communicated by G. Gallavotti

Member of C.N.R.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetrite, R., Gawȩdzki, K. Fluctuation Relations for Diffusion Processes. Commun. Math. Phys. 282, 469–518 (2008). https://doi.org/10.1007/s00220-008-0502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0502-9

Keywords

Navigation