Skip to main content
Log in

P(ϕ) 2 Quantum Field Theories and Segal’s Axioms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to show that P(ϕ) 2 Euclidean quantum field theories satisfy axioms of the type advocated by Graeme Segal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogachev, V.: Gaussian Measures. Mathematical Surveys and Monographs 62, Providence, RI: Amer. Math. Soc. 1998

  2. Bourbaki, N.: Elements of Mathematique. Fasc. XXXV, Livre VI: Integration, Ch IX, Actualites Sci. Indust., No. 1343, Paris: Hermann, 1969

  3. Burghelea, D., Friedlander, L., Kappeler, T.: Mayer-Vietoris type formulas for determinants of elliptic operators. J. Funct. Anal. 107, 34–65 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Colella, P., Lanford, O.E.: Sample field behavior for the free Markov random field. In: Constructive Quantum Field Theory, edited by G. Velo and A. Wightman, Lecture Notes in physics, 25, Berlin:Springer-Verlag, 1973, pp. 44–70

  5. Dimock, J.: Transition amplitudes and sewing properties for bosons on the Riemann sphere. J. Math. Phys. 48 (5) (2007)

  6. Dixmier, J.: Les algebres d’operateurs dans l’espace Hilbertien. Paris:Gauthier Villars, 1969

  7. Folland, G.: Introduction to Partial Differential Equations. Mathematical Notes, Princeton, NJ: Princeton University Press, 1976

  8. Friedlander, L.: PhD thesis, Dept. Math., MIT, 1989

  9. Glimm, J., Jaffe, A.: Quantum Physics, a Functional Integral Point of View. Berlin-Heidelberg- New York:Springer-Verlag, 1981

  10. Guillemin, V., Sternberg, S.: Geometric Asymptotics. Math. Surveys. no. 14, Providence, RI: Amer. Math. Soc., 1977

  11. Howe, R.: The oscillator semigroup. In: The Mathematical Heritage of Hermann Weyl. edited by R. Wells, Proceedings of Symposia in Pure Mathematics, Vol. 48, Providence, RI: Amer. Math. Soc., 1989, pp. 61–132

  12. Kontsevich, M., Vishik, S.: Geometry of determinants of elliptic operators. In: Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswich, NJ, 1993) Progr. Math. 131, Boston, MA: Birkhä user, 1995, pp. 173–197

  13. Segal, G.: The definition of conformal field theory, In: Geometry and Quantum Field Theory, edited by U. Tillmann, Oxford: Oxford Univ. Press, 2004, pp. 423–577

  14. Segal, G.: Lectures at Stanford University, 1996 and 2006, unpublished

  15. Simon, B.: The P(ϕ)2 Euclidean (Quantum) Field Theory. Princeton Series in Physics, Princeton, NJ: Princeton Univ. Press, 1974

  16. Weinstein, A.: Symplectic geometry. Bull. Amer. Math. Soc. 5(1), 1–13 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug Pickrell.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickrell, D. P(ϕ) 2 Quantum Field Theories and Segal’s Axioms. Commun. Math. Phys. 280, 403–425 (2008). https://doi.org/10.1007/s00220-008-0467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0467-8

Keywords

Navigation