Skip to main content
Log in

Moduli Spaces of Self-Dual Connections over Asymptotically Locally Flat Gravitational Instantons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2009

Abstract

We investigate Yang–Mills instanton theory over four dimensional asymptotically locally flat (ALF) geometries, including gravitational instantons of this type, by exploiting the existence of a natural smooth compactification of these spaces introduced by Hausel–Hunsicker–Mazzeo. First referring to the codimension 2 singularity removal theorem of Sibner–Sibner and Råde we prove that given a smooth, finite energy, self-dual SU(2) connection over a complete ALF space, its energy is congruent to a Chern–Simons invariant of the boundary three-manifold if the connection satisfies a certain holonomy condition at infinity and its curvature decays rapidly. Then we introduce framed moduli spaces of self-dual connections over Ricci flat ALF spaces. We prove that the moduli space of smooth, irreducible, rapidly decaying self-dual connections obeying the holonomy condition with fixed finite energy and prescribed asymptotic behaviour on a fixed bundle is a finite dimensional manifold. We calculate its dimension by a variant of the Gromov–Lawson relative index theorem. As an application, we study Yang–Mills instantons over the flat \({\mathbb{R}}^3 \times S^1\) , the multi-Taub–NUT family, and the Riemannian Schwarzschild space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev A.N. and Saclioglu C. (2006). Self-dual fields harbored by a Kerr–Taub-BOLT instanton. Phys. Lett. B632: 725–727

    MathSciNet  ADS  Google Scholar 

  2. Atiyah M.F., Hitchin N.J. and Singer I.M. (1978). Self-duality in four dimensional Riemannian geometry. Proc. Roy. Soc. London A362: 425–461

    MathSciNet  ADS  Google Scholar 

  3. Auckly D.R. (1994). Topological methods to compute Chern–Simons invariants. Math. Proc. Camb. Phil. Soc. 115: 229–251

    Article  MATH  MathSciNet  Google Scholar 

  4. Bruckmann F. and van Baal P. (2002). Multi-caloron solutions. Nucl. Phys. B645: 105–133

    Article  ADS  Google Scholar 

  5. Bruckmann F., Nógrádi D. and van Baal P. (2004). Higher charge calorons with non-trivial holonomy. Nucl. Phys. B698: 233–254

    Article  ADS  Google Scholar 

  6. Charap J.M. and Duff M.J. (1977). Space-time topology and a new class of Yang-Mills instanton. Phys. Lett. B71: 219–221

    MathSciNet  ADS  Google Scholar 

  7. Cherkis, S.A.: Self-dual gravitational instantons. Talk given at the AIM-ARCC workshop “L 2 cohomology in geometry and physics”, Palo Alto, USA, March 16–21, 2004

  8. Cherkis S.A. and Hitchin N.J. (2005). Gravitational instantons of type D k . Commun. Math. Phys. 260: 299–317

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Cherkis S.A. and Kapustin A. (2002). Hyper-Kähler metrics from periodic monopoles. Phys. Rev. D65: 084015

    MathSciNet  ADS  Google Scholar 

  10. Cherkis S.A. and Kapustin A. (1999). D k gravitational instantons and Nahm equations. Adv. Theor. Math. Phys. 2: 1287–1306

    MathSciNet  Google Scholar 

  11. Chern S. and Simons J. (1974). Characteristic forms and geometric invariants. Ann. Math. 99: 48–69

    Article  MathSciNet  Google Scholar 

  12. Derek H. (2007). Large scale and large period limits of symmetric calorons. J. Math. Phys. 48: 082905

    Article  MathSciNet  Google Scholar 

  13. Dodziuk J. (1981). Vanishing theorems for square-integrable harmonic forms. Proc. Indian Acad. Sci. Math. Sci. 90: 21–27

    Article  MATH  MathSciNet  Google Scholar 

  14. Eguchi T., Gilkey P.B. and Hanson A.J. (1980). Gravity, gauge theories and differential geometry. Phys. Rep. 66: 213–393

    Article  MathSciNet  ADS  Google Scholar 

  15. Etesi G. (2006). The topology of asymptotically locally flat gravitational instantons. Phys. Lett. B641: 461–465

    MathSciNet  ADS  Google Scholar 

  16. Etesi G. and Hausel T. (2001). Geometric interpretation of Schwarzschild instantons. J. Geom. Phys. 37: 126–136

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Etesi G. and Hausel T. (2001). Geometric construction of new Yang–Mills instantons over Taub–NUT space. Phys. Lett. B514: 189–199

    MathSciNet  ADS  Google Scholar 

  18. Etesi G. and Hausel T. (2003). On Yang–Mills instantons over multi-centered gravitational instantons. Commun. Math. Phys. 235: 275–288

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Gibbons G.W. and Hawking S.W. (1976). Gravitational multi-instantons. Phys. Lett. B78: 430–432

    ADS  Google Scholar 

  20. Gromov M. and Lawson H.B. Jr (1983). Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. 58: 83–196

    Article  MATH  MathSciNet  Google Scholar 

  21. Hausel T., Hunsicker E. and Mazzeo R. (2004). Hodge cohomology of gravitational instantons. Duke Math. J. 122: 485–548

    Article  MATH  MathSciNet  Google Scholar 

  22. Hawking S.W. (1977). Gravitational instantons. Phys. Lett. A60: 81–83

    MathSciNet  ADS  Google Scholar 

  23. Jardim, M.: Nahm transform of doubly periodic instantons. PhD Thesis, University of Oxford, 110 pp, http://arXiv.org/list/math.DG/9912028, 1999

  24. Jardim M. (2002). Nahm transform and spectral curves for doubly-periodic instantons. Commun. Math. Phys. 225: 639–668

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Kirk P. and Klassen E. (1990). Chern–Simons invariants and representation spaces of knot groups. Math. Ann. 287: 343–367

    Article  MATH  MathSciNet  Google Scholar 

  26. Kronheimer P.B. (1989). The construction of ALE spaces as hyper-Kähler quotients. J. Diff. Geom. 29: 665–683

    MATH  MathSciNet  Google Scholar 

  27. Kronheimer P.B. and Nakajima N. (1990). Yang–Mills instantons on ALE gravitational instantons. Math. Ann. 288: 263–307

    Article  MATH  MathSciNet  Google Scholar 

  28. Morgan, J.W., Mrowka, T., Ruberman, D.: The L 2 moduli space and a vanishing theorem for Donaldson polynomial invariants. Monographs in geometry and topology, Volume II, Cambridge, MA: Int. Press, 1994

  29. Nakajima H. (1990). Moduli spaces of anti-self-dual connections on ALE gravitational instantons. Invent. Math. 102: 267–303

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Nye, T.M.W.: The geometry of calorons. PhD Thesis, University of Edinburgh, 147 pp, http://arXiv.org/list/hep-th/0311215, 2001

  31. Parker T. and Taubes C.H. (1982). On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84: 223–238

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Råde J. (1994). Singular Yang–Mills fields. Local theory II. J. Reine Angew. Math. 456: 197–219

    MATH  MathSciNet  Google Scholar 

  33. Sibner L.M. and Sibner R.J. (1992). Classification of singular Sobolev connections by their holonomy. Commun. Math. Phys. 144: 337–350

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Tekin B. (2002). Yang-Mills solutions on Euclidean Schwarzschild space. Phys. Rev. D65: 084035

    MathSciNet  ADS  Google Scholar 

  35. Wehrheim K. (2006). Energy identity for anti-self-dual instantons on \({\mathbb{C}} \times \Sigma\). Math. Res. Lett. 13: 161–166

    MATH  MathSciNet  Google Scholar 

  36. Yau S-T. (1975). Harmonic functions on complete Riemannian manifolds. Commun. Pure. Appl. Math. 28: 201–228

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Jardim.

Additional information

Communicated by G.W. Gibbons

An erratum to this article can be found online at http://dx.doi.org/http://dx.doi.org/10.1007/s00220-009-0797-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etesi, G., Jardim, M. Moduli Spaces of Self-Dual Connections over Asymptotically Locally Flat Gravitational Instantons. Commun. Math. Phys. 280, 285–313 (2008). https://doi.org/10.1007/s00220-008-0466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0466-9

Keywords

Navigation