Skip to main content
Log in

Eigenvalue Bounds for Perturbations of Schrödinger Operators and Jacobi Matrices With Regular Ground States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove general comparison theorems for eigenvalues of perturbed Schrödinger operators that allow proof of Lieb–Thirring bounds for suitable non-free Schrödinger operators and Jacobi matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birman M.Sh. (1961). On the spectrum of singular boundary-value problems. Mat. Sb. (N.S.) 55(97): 125–174 (Russian)

    MathSciNet  Google Scholar 

  2. Birman, M.Sh., Laptev, A., Suslina, T.A.: The discrete spectrum of a two-dimensional second-order periodic elliptic operator perturbed by a decreasing potential. I. A semi-infinite gap. St. Petersburg Math. J. 12, 535–567 (2001); Russian original in Algebra i Analiz 12, 36–78 (2000)

  3. Christiansen, J., Simon, B., Zinchenko, M.: In preparation

  4. Damanik, D., Killip, R., Simon, B.: Perturbations of orthogonal polynomials with periodic recursion coefficients. Preprint

  5. Ekholm T. and Frank R. (2006). On Lieb–Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264: 725–740

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. JAMS, in press, DOI: 10.1090/s0894-0347-07-00582-6, 2007

  7. Glimm J. and Jaffe A. (1981). Quantum Physics. A Functional Integral Point of View. Springer-Verlag, New York-Berlin

    MATH  Google Scholar 

  8. Hundertmark, D.: Some bound state problems in quantum mechanics. In: “Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday”, F. Gesztesy et al., eds., Proc. Symp. Pure Math. 76.1, Providence, RI: Amer. Math. Soc., 2007, pp. 463–496

  9. Hundertmark D. and Simon B. (2002). Lieb–Thirring inequalities for Jacobi matrices. J. Approx. Theory 118: 106–130

    Article  MATH  MathSciNet  Google Scholar 

  10. Hundertmark D. and Simon B. (2008). Eigenvalue bounds in the gaps of Schrödinger operators and Jacobi matrices. J. Math. Anal. Appl. 340: 892–900

    Article  MATH  MathSciNet  Google Scholar 

  11. Jacobi C.G.J. (1837). Zur Theorie der Variationsrechnung und der Differentialgleichungen. J. für Math. von Crelle 17: 68–82

    MATH  Google Scholar 

  12. Kirsch W. and Simon B. (1987). Comparison theorems for the gap of Schrödinger operators. J. Funct. Anal. 75: 396–410

    Article  MATH  MathSciNet  Google Scholar 

  13. Kovarik H., Vugalter S. and Weidl T. (2007). Spectral estimates for two-dimensional Schrödinger operators with application to quantum layers. Commun. Math. Phys. 275(3): 827–838

    Article  ADS  MathSciNet  Google Scholar 

  14. Laptev, A., Weidl, T.: Recent results on Lieb–Thirring inequalities. In: Journées “ Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Exp. No. XX, Nantes: Univ. Nantes, 2000

  15. Peherstorfer F. and Yuditskii P. (2001). Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points. Proc. Amer. Math. Soc. 129: 3213–3220

    Article  MATH  MathSciNet  Google Scholar 

  16. Reed M. and Simon B. (1978). Methods of Modern Mathematical Physics, IV: Analysis of Operators. Academic Press, New York

    MATH  Google Scholar 

  17. Schmincke U.-W. (1978). On Schrödinger’s factorization method for Sturm–Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 80: 67–84

    MathSciNet  Google Scholar 

  18. Simon B. (1982). Schrödinger semigroups. Bull. Amer. Math. Soc. 7: 447–526

    Article  MATH  MathSciNet  Google Scholar 

  19. Sodin M. and Yuditskii P. (1997). Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion and Hardy spaces of character-automorphic functions. J. Geom. Anal. 7: 387–435

    MATH  MathSciNet  Google Scholar 

  20. Zaharov V.E. and Faddeev L.D. (1971). The Korteweg–de Vries equation is a fully integrable Hamiltonian system. Funk. Anal. i Pril. 5: 18–27 (Russian)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Simon.

Additional information

Communicated by M. Aizenman

Supported in part by NSF Grant DMS-0140592 and U.S.–Israel Binational Science Foundation (BSF) Grant No. 2002068.

Supported in part by DFG grant WE-1964 2/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, R.L., Simon, B. & Weidl, T. Eigenvalue Bounds for Perturbations of Schrödinger Operators and Jacobi Matrices With Regular Ground States. Commun. Math. Phys. 282, 199–208 (2008). https://doi.org/10.1007/s00220-008-0453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0453-1

Keywords

Navigation