Skip to main content
Log in

Zygmund Spaces, Inviscid Limit and Uniqueness of Euler Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper improves the classical uniqueness result for the incompressible Euler system in the n dimensional case assuming that \(\nabla u^E \in L_1(0,T;{\it BMO}(\Omega))\) , only. Moreover the rate of the convergence for the inviscid limit of solutions to the Navier-Stokes equations is obtained, under the same regularity of the limit Eulerian flow. A key element of the proof is a logarithmic inequality between the Hardy and L 1 spaces which is a consequence of the basic properties of the Zygmund space L ln L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clopeau T., Mikelić A. and Robert R. (1998). On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with friction type boundary conditions. Nonlinearity 11: 1625–1636

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Constantin P. and Wu J. (1995). Inviscid limit for vortex patches. Nonlinearity 8: 735–742

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Fefferman C. and Stein E.M. (1972). H p spaces of several variables. Acta Math. 129(3-4): 137–193

    Article  MATH  MathSciNet  Google Scholar 

  4. Fujita H. (2002). Remarks on the Stokes flow under slip and leak boundary conditions of friction type, Topics in mathematical fluid mechanics. Quad. Mat. 10: 73–94

    Google Scholar 

  5. Hartman F. (1964). Ordinary differential equations. John Wiley & Sons, NY-London-Sydney

    MATH  Google Scholar 

  6. Kato T. (1967). On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Rat. Mech. Anal. 25: 188–200

    Article  MATH  Google Scholar 

  7. Kozono H. and Taniuchi Y. (2000). Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214(1): 191–200

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Masmoudi N. (2007). Remarks about the inviscid limit of the Navier-Stokes system. Commun. Math. Phys. 270(3): 777–788

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Mucha P.B. (2003). On the inviscid limit of the Navier-Stokes equations for flows with large flux. Nonlinearity 16(5): 1715–1732

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Mucha P.B. (2004). The Navier-Stokes equations and the maximum principle. Int. Math. Res. Not. 2004(67): 3585–3605

    Article  MATH  MathSciNet  Google Scholar 

  11. Rencławowicz J. and Zaj̧czkowski W.M. (2006). Weak solutions to the Navier-Stokes equations in a Y-shaped domain. Appl. Math. (Warsaw) 33(1): 111–127

    Article  MathSciNet  MATH  Google Scholar 

  12. Rusin W.M. (2006). On the inviscid limit for the solutions of two-dimensional incompressible Navier-Stokes equations with slip-type boundary conditions. Nonlinearity 19(6): 1349–1363

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30, Princeton, NJ: Princeton University Press, 1970

  14. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton, NJ: Princeton University Press, 1993

  15. Torchinsky, A.: Real-variable methods in harmonic analysis. Pure and Applied Mathematics, 123. Orlando, FL: Academic Press, Inc., 1986

  16. Yudovich V. (1963). Nonstationary flow of an ideal incompressible liquid. Zhurn. Vych. Mat. 3: 1032–1066

    MATH  Google Scholar 

  17. Yudovich V. (1995). Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2: 27–38

    MATH  MathSciNet  Google Scholar 

  18. Vishik M. (1999). Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. cole Norm. Sup. (4) 32(6): 769–812

    MATH  MathSciNet  Google Scholar 

  19. Xiao Y. and Xin Z. (2007). On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60(7): 1027–1055

    Article  MATH  MathSciNet  Google Scholar 

  20. Zygmund A. (1959). Trygonometric Series. Cambridge Univ. Press, London-NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter M. Rusin.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucha, P.B., Rusin, W.M. Zygmund Spaces, Inviscid Limit and Uniqueness of Euler Flows. Commun. Math. Phys. 280, 831–841 (2008). https://doi.org/10.1007/s00220-008-0452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0452-2

Keywords

Navigation