Skip to main content
Log in

The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as \(\lambda \to \infty, {\rm dim} (\sigma(H_\lambda)) \cdot {\rm log} \lambda\)converges to an explicit constant, \({\rm log}(1+\sqrt{2})\approx 0.88137\) . We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schrödinger dynamics generated by the Fibonacci Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M. and Stegun I. (1965). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York

    Google Scholar 

  2. Barbaroux J.-M., Germinet F. and Tcheremchantsev S. (2001). Fractal dimensions and the phenomenon of intermittency in quantum dynamics. Duke Math. J. 110: 161–193

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbaroux J.-M., Germinet F. and Tcheremchantsev S. (2001). Generalized fractal dimensions: equivalences and basic properties. J. Math. Pures Appl. 80: 977–1012

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellissard J., Iochum B., Scoppola E. and Testard D. (1989). Spectral properties of one-dimensional quasicrystals. Commun. Math. Phys. 125: 527–543

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Casdagli M. (1986). Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107: 295–318

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Damanik, D.: Strictly ergodic subshifts and nassociated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proceedings of Symposia in Pure Mathematics 74, Providence, RI: Amer. Math. Soc. 2006, pp. 505–538

  7. Damanik D. and Lenz D. (1999). Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues. Commun. Math. Phys. 207: 687–696

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Damanik D. and Lenz D. (1999). Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent. Lett. Math. Phys. 50: 245–257

    Article  MathSciNet  MATH  Google Scholar 

  9. Damanik D. and Tcheremchantsev S. (2003). Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236: 513–534

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Damanik D. and Tcheremchantsev S. (2007). Upper bounds in quantum dynamics. J. Amer. Math. Soc. 20: 799–827

    Article  MathSciNet  MATH  Google Scholar 

  11. Germinet F., Kiselev A. and Tcheremchantsev S. (2004). Transfer matrices and transport for Schrödinger operators. Ann. Inst. Fourier (Grenoble) 54: 787–830

    MathSciNet  MATH  Google Scholar 

  12. Hasselblatt, B.: Hyperbolic dynamical systems. In: Handbook of Dynamical SystemsVol. 1A. Amsterdam: North-Holland, 2002, pp. 239–319

  13. Hof A., Knill O. and Simon B. (1995). Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174: 149–159

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Iochum B. and Testard D. (1991). Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65: 715–723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kadanoff, L.: Analysis of cycles for a volume preserving map. Unpublished

  16. Kaminaga M. (1996). Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential. Forum Math. 8: 63–69

    Article  MathSciNet  MATH  Google Scholar 

  17. Killip R., Kiselev A. and Last Y. (2003). Dynamical upper bounds on wavepacket spreading. Amer. J. Math. 125: 1165–1198

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohmoto M., Kadanoff L.P. and Tang C. (1983). Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 50: 1870–1872

    Article  ADS  MathSciNet  Google Scholar 

  19. Kotani S. (1989). Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1: 129–133

    Article  MathSciNet  MATH  Google Scholar 

  20. Mañé R. (1990). The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.) 20: 1–24

    Article  MathSciNet  MATH  Google Scholar 

  21. Mattila P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. McCluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergodic Theory Dynam. Systems 3, 251–261 (1983); Erratum. Ergodic Theory Dynam. Systems 5, 319 (1985)

    Google Scholar 

  23. Ostlund S., Pandit R., Rand D., Schellnhuber H.J. and Siggia E.D. (1983). One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50: 1873–1877

    Article  ADS  MathSciNet  Google Scholar 

  24. Palis J. and Takens F. (1993). Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Palis, J., Viana, M.: On the continuity of the Hausdorff dimension and limit capacity for horseshoes, In: Dynamical Systems, Lecture Notes in Mathematics 1331, Berlin: Springer, 1988, pp. 150–160

  26. Pesin Ya. (1997). Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago

    Google Scholar 

  27. Raymond, L.: A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain. Preprint (1997)

  28. Sütő A. (1987). The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111: 409–415

    Article  ADS  Google Scholar 

  29. Sütő A. (1989). Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56: 525–531

    Article  ADS  Google Scholar 

  30. Takens, F.: Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. In: Dynamical Systems, Lecture Notes in Mathematics 1331, Springer, Berlin, 1988, pp. 196–212

  31. Tcheremchantsev S. (2003). Mixed lower bounds for quantum transport. J. Funct. Anal. 197: 247–282

    Article  MathSciNet  MATH  Google Scholar 

  32. Tcheremchantsev, S.: In preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Damanik.

Additional information

Communicated by B. Simon.

D. D. was supported in part by NSF grant DMS–0653720.

M. E. was supported by NSF grant DMS-CAREER-0449973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damanik, D., Embree, M., Gorodetski, A. et al. The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys. 280, 499–516 (2008). https://doi.org/10.1007/s00220-008-0451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0451-3

Keywords

Navigation