Skip to main content

Advertisement

Log in

The Ground State Energy of Heavy Atoms: Relativistic Lowering of the Leading Energy Correction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe atoms by a pseudo-relativistic model that has its origin in the work of Chandrasekhar. We prove that the leading energy correction for heavy atoms, the Scott correction, exists. It turns out to be lower than in the non-relativistic description of atoms. Our proof is valid up to and including the critical coupling constant. It is based on a renormalization of the energy whose zero level we adjust to be the ground-state energy of the corresponding non-relativistic problem. This allows us to roll the proof back to results for the Schrödinger operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, V.: Ein Beweis der Scottschen Vermutung für Ionen. Master’s thesis, Institut für Mathematische Physik, Technische Universität Braunschweig, Braunschweig, June 1989

  2. Bach V. (1989). A proof of Scott’s conjecture for ions. Rep. Math. Phys. 28(2): 213–248

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bach V. (1992). Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147: 527–548

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Balodis P. (2004). A proof of Scott’s correction for matter. Commun. Math. Phys. 249(1): 79–132

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Cassanas R. and Siedentop H. (2006). The ground-state energy of heavy atoms according to Brown and Ravenhall: absence of relativistic effects in leading order. J. Phys. A 39(33): 10405–10414

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Chandrasekhar S. (1931). The maximum mass of ideal white dwarfs. Astrophys. J. 74: 81–82

    Article  MATH  ADS  Google Scholar 

  7. Daubechies I. (1983). An uncertainty principle for Fermions with generalized kinetic energy. Commun. Math. Phys. 90: 511–520

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Davies, E.B.: Heat kernels and spectral theory, Volume 92 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 1990

  9. Englert, B.-G.: Semiclassical Theory of Atoms. Number 300 in Lecture Notes in Physics, 1 edition, Berlin: Springer-Verlag, 1988

  10. Englert B.-G. and Schwinger J. (1984). Statistical atom: Handling the strongly bound electrons. Phys. Rev. A 29(5): 2331–2338

    Article  ADS  MathSciNet  Google Scholar 

  11. Englert B.-G. and Schwinger J. (1984). Statistical atom: Some quantum improvements. Phys. Rev. A 29(5): 2339–2352

    Article  ADS  MathSciNet  Google Scholar 

  12. Englert B.-G. and Schwinger J. (1985). Atomic-binding-energy oscillations. Phys. Rev. A 32: 47–63

    Article  ADS  Google Scholar 

  13. Fefferman C. and Seco L. (1992). Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2): 145–305

    Article  MATH  MathSciNet  Google Scholar 

  14. Fefferman C. and Seco L. (1994). The density of a one-dimensional potential. Adv. Math. 107(2): 187–364

    Article  MATH  MathSciNet  Google Scholar 

  15. Fefferman C. and Seco L. (1994). The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2): 263–335

    Article  MATH  MathSciNet  Google Scholar 

  16. Fefferman C. and Seco L. (1994). On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1): 1–188

    Article  MATH  MathSciNet  Google Scholar 

  17. Fefferman C. and Seco L. (1995). The density in a three-dimensional radial potential. Adv. Math. 111(1): 88–161

    Article  MATH  MathSciNet  Google Scholar 

  18. Fefferman C.L. and Seco L.A. (1989). An upper bound for the number of electrons in a large ion. Proc. Nat. Acad. Sci. USA 86: 3464–3465

    Article  ADS  MathSciNet  Google Scholar 

  19. Fefferman C.L. and Seco L.A. (1990). Asymptotic neutrality of large ions. Commun. Math. Phys. 128: 109–130

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Fefferman C.L. and Seco L.A. (1990). On the energy of a large atom. Bull. AMS 23(2): 525–530

    MATH  MathSciNet  Google Scholar 

  21. Fefferman C.L. and Seco L.A. (1993). Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. Rev. Math. Iberoamer. 9(3): 409–551

    MATH  MathSciNet  Google Scholar 

  22. Fermi E. (1927). Un metodo statistico per la determinazione di alcune proprietá dell’atomo. Atti della Reale Accademia Nazionale dei Lincei, Rendiconti, Classe di Scienze Fisiche, Matematiche e Naturali 6(12): 602–607

    Google Scholar 

  23. Fermi E. (1928). Eine statistische Begründung zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendungen auf die Theorie des periodischen Systems der Elemente. Z. Phys. 48: 73–79

    Article  ADS  Google Scholar 

  24. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. AMS (in press). DOI 10.1090/s0894-0347-07-00582-6

  25. Herbst I.W. (1977). Spectral theory of the operator (p 2m 2)1/2Ze 2/r. Commun. Math. Phys. 53: 285–294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hughes, W.: An Atomic Energy Lower Bound that Gives Scott’s Correction. PhD thesis, Princeton, Department of Mathematics, 1986

  27. Hughes W. (1990). An atomic lower bound that agrees with Scott’s correction. Adv. in Math. 79: 213–270

    Article  MATH  Google Scholar 

  28. Ivrii, V.: Semiclassical asymptotics for exchange energy. In: Séminaire sur les Équations aux Dérivées Partielles, 1993–1994, Palaiseau: École Polytech., 1994, pp. Exp. No. XX, 12

  29. Ivrii V.Ja. and Sigal I.M. (1993). Asymptotics of the ground state energies of large Coulomb systems. Ann. of Math. 138(2): 243–335

    Article  MATH  MathSciNet  Google Scholar 

  30. Ivrii, V.: Heavy atoms in a superstrong magnetic field. In: Differential operators and spectral theory, Providence, RI: Amer. Math. Soc., 1999, pp.125–137

  31. Lenz W. (1932). Über die Awendbarkeit der statistischen Methode auf Ionengitter. Z. Phys. 77: 713–721

    Article  MATH  ADS  Google Scholar 

  32. Lieb E.H. (1979). A lower bound for Coulomb energies. Phys. Lett. 70: 444–446

    Article  MathSciNet  Google Scholar 

  33. Lieb, E.H.: Variational principle for Many-Fermion systems. Phys. Rev. Lett. 46, 457–459 (1981), Erratum: Phys. Rev. Lett. 47, 69 (1981)

    Google Scholar 

  34. Lieb E.H. (1981). Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4): 603–641

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics. 2nd edition, Providence, RI: American Mathematical Society, 2001

  36. Lieb E.H. and Oxford S. (1981). Improved lower bound on the indirect Coulomb energy. Intern. J. Quantum Chem. 19: 427–439

    Article  Google Scholar 

  37. Lieb E.H. and Simon B. (1977). The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23: 22–116

    Article  MathSciNet  Google Scholar 

  38. Lieb E.H. and Yau H.-T. (1988). The stability and instability of relativistic matter. Commun. Math. Phys. 118: 177–213

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Luke, Y.F.: Integrals of Bessel functions. In: M. Abramowitz, I.A. Stegun, ed. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 5th edition, Chapter 9, New York: Dover Publications, 1968, pp. 479–494

  40. Mancas, P., Klaus, A., Müller, M., Siedentop, H.: The optimal size of the exchange hole and reduction to one-particle Hamiltonians. In: Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 111(1), 49–53, (2004)

  41. Matesanz P.B. and Solovej J.P. (2000). On the asymptotic exactness of Thomas-Fermi theory in the thermodynamic limit. Ann. Henri Poincaré 1(2): 281–306

    Article  MATH  MathSciNet  Google Scholar 

  42. Newton, I.: Philosophiae naturalis principia mathematica. Vol. I. Cambridge, MA: Harvard Univ. Press, 1972. Reprinting of the third edition (1726) with variant readings, Assembled and edited by A. Koyré, I.B. Cohen with the assistance of A. Whitman

  43. Olver, F.W.J.: Bessel functions of integer order. In: M. Abramowitz, I.A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 5th edition, chapter 9, New York: Dover Publications, 1968, pp. 355–433

  44. Sørensen, T.Ø.: Towards a Relativistic Scott Correction. PhD thesis, Aarhus Universitet, http://www.imf.au.dk/cgi-bin/viewers/viewpublications.cgi?id=79 , October 1998

  45. Sørensen T.Ø. (2005). The large-Z behavior of pseudorelativistic atoms. J. Math. Phys. 46(5): 052307, 24

    Article  Google Scholar 

  46. Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York: Academic Press, 1972

  47. Schwinger J. (1980). Thomas-Fermi model: The leading correction. Phys. Rev. A 22(5): 1827–1832

    Article  ADS  MathSciNet  Google Scholar 

  48. Schwinger J. (1981). Thomas-Fermi model: The second correction. Phys. Rev. A 24(5): 2353–2361

    Article  ADS  MathSciNet  Google Scholar 

  49. Siedentop H. and Weikard R. (1987). On the leading energy correction for the statistical model of the atom: Interacting case. Commun. Math. Phys. 112: 471–490

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Siedentop H. and Weikard R. (1987). Upper bound on the ground state energy of atoms that proves Scott’s conjecture. Phys. Lett. A 120: 341–342

    Article  ADS  MathSciNet  Google Scholar 

  51. Siedentop H. and Weikard R. (1988). On the leading energy correction of the statistical atom: Lower bound. Europhys. Lett. 6: 189–192

    Article  ADS  Google Scholar 

  52. Siedentop H. and Weikard R. (1989). On the leading correction of the Thomas-Fermi model: Lower bound – with an appendix by A.M.K. Müller. Invent. Math. 97: 159–193

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Siedentop H. and Weikard R. (1991). A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators. Ann. Sci. de l’École Normale Supér. 24(2): 215–225

    MATH  MathSciNet  Google Scholar 

  54. Simon, B.: Trace ideals and their applications, Volume 120 of Mathematical Surveys and Monographs, 2nd ed. Providence, RI: Amer. Math. Soc., 2005

  55. Slater J.C. (1951). A simplification of the Hartree-Fock method. Phys. Rev. 81(3): 385–390

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Sobolev A.V. (1994). The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field. Duke Math. J. 74(2): 319–429

    Article  MATH  MathSciNet  Google Scholar 

  57. Solovej, J.P.: The relativistic Scott correction. In: M.J. Esteban, C. Le Bris, G. Scuseria, eds. Mathematical and Numerical Aspects of Quantum Chemistry Problems, Volume 47/2006 of Oberwolfach Report, Mathematisches Forschungsinstitut Oberwolfach, Berlin: European Mathematical Society, 2006, pp. 52–53

  58. Solovej, J.P., Spitzer, W.L.: New coherent states and a new proof of the Scott correction. In: Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Volume 327 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2003, pp. 305–319

  59. Solovej J.P. and Spitzer W.L. (2003). A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2–3): 383–420

    MATH  ADS  MathSciNet  Google Scholar 

  60. Thirring W. (1981). A lower bound with the best possible constant for Coulomb Hamiltonians. Commun. Math. Phys. 79: 1–7

    Article  ADS  MathSciNet  Google Scholar 

  61. Thomas L.H. (1927). The calculation of atomic fields. Proc. Camb. Phil. Soc. 23: 542–548

    Article  MATH  Google Scholar 

  62. Weder R. (1975). Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20: 319–337

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Siedentop.

Additional information

Communicated by B. Simon

© 2007 The authors. Reproduction of this article for non-commercial purposes by any means is permitted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, R.L., Siedentop, H. & Warzel, S. The Ground State Energy of Heavy Atoms: Relativistic Lowering of the Leading Energy Correction. Commun. Math. Phys. 278, 549–566 (2008). https://doi.org/10.1007/s00220-007-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0397-x

Keywords

Navigation