Skip to main content
Log in

Supersymmetric Quantum Mechanics and Super-Lichnerowicz Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present supersymmetric, curved space, quantum mechanical models based on deformations of a parabolic subalgebra of osp(2p+2|Q). The dynamics are governed by a spinning particle action whose internal coordinates are Lorentz vectors labeled by the fundamental representation of osp(2p|Q). The states of the theory are tensors or spinor-tensors on the curved background while conserved charges correspond to the various differential geometry operators acting on these. The Hamiltonian generalizes Lichnerowicz’s wave/Laplace operator. It is central, and the models are supersymmetric whenever the background is a symmetric space, although there is an osp(2p|Q) superalgebra for any curved background. The lowest purely bosonic example (2p, Q) = (2, 0) corresponds to a deformed Jacobi group and describes Lichnerowicz’s original algebra of constant curvature, differential geometric operators acting on symmetric tensors. The case (2p, Q) = (0, 1) is simply the \({\mathcal N} = 1\) superparticle whose supercharge amounts to the Dirac operator acting on spinors. The (2p, Q) = (0, 2) model is the \({\mathcal N} = 2\) supersymmetric quantum mechanics corresponding to differential forms. (This latter pair of models are supersymmetric on any Riemannian background.) When Q is odd, the models apply to spinor-tensors. The (2p, Q) = (2, 1) model is distinguished by admitting a central Lichnerowicz-Dirac operator when the background is constant curvature. The new supersymmetric models are novel in that the Hamiltonian is not just a square of super charges, but rather a sum of commutators of supercharges and commutators of bosonic charges. These models and superalgebras are a very useful tool for any study involving high rank tensors and spinors on manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Gaume L. and Witten E. (1984). Nucl. Phys. B 234: 269

    Article  ADS  MathSciNet  Google Scholar 

  2. Witten E. (1982). J. Diff. Geom. 17: 661

    MATH  MathSciNet  Google Scholar 

  3. Zumino B. (1979). Phys. Lett. B 87: 203

    Article  ADS  Google Scholar 

  4. Witten E. (1982). Nucl. Phys. B 202: 253

    Article  ADS  MathSciNet  Google Scholar 

  5. Figueroa-O’Farrill J.M., Kohl C. and Spence B.J. (1997). Nucl. Phys. B 503: 614

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Lichnerowicz, A.: Institut des Hautes Études Scientifiques, 10, 293 (1961); Bull. Soc. Math. France, 92, 11 (1964)

  7. Duval, C., Lecomte, P., Ovsienko, V.: Ann. Inst. Fourier, 49, 1999 (1999); Duval, C., Ovsienko, V.: Selecta Math. (N.S.), 7, 291 (2001)

  8. Hallowell K. and Waldron A. (2005). Nucl. Phys. B 724: 453

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Brink L., Deser S., Zumino B., Di Vecchia P. and Howe P.S. (1976). Phys. Lett. B 64: 435

    Article  ADS  Google Scholar 

  10. Rietdijk R.H. and Holten J.W. (1990). Class. Quant. Grav. 7: 247

    Article  MATH  ADS  Google Scholar 

  11. Gibbons G.W., Rietdijk R.H. and Holten J.W. (1993). Nucl. Phys. B 404: 42

    Article  MATH  ADS  Google Scholar 

  12. Gershun, V.D., Tkach, V.I.: Pisma Zh. Eksp. Teor. Fiz. 29, 320 (1979) [Sov. Phys. JETP 29, 288 (1979)]; Howe, P.S., Penati, S., Pernici, M., Townsend, P.K.: Phys. Lett. B 215, 555 (1988); Class. Quant. Grav. 6, 1125 (1989)

  13. Bastianelli F., Corradini O. and Latini E. (2007). Higher spin fields from a worldline perspective. JHEP 0702: 072

    Article  ADS  MathSciNet  Google Scholar 

  14. Labastida J.M.F. (1989). Nucl. Phys. B 322: 185

    Article  ADS  MathSciNet  Google Scholar 

  15. Vasiliev M.A. (1988). Phys. Lett. B 209: 491

    Article  ADS  MathSciNet  Google Scholar 

  16. Vasiliev, M.A.: Phys. Lett. B 243, 378 (1990), Phys. Lett. B 567, 139 (2003); see also Sagnotti, A., Sezgin, E., Sundell, P.: On higher spins with a strong Sp(2,\({\mathbb R}\)) condition. In: Proc. First Solvay Workshop on Higher Spin Gauge Theorey. (Brussels, May 2004), available at http://www.solvayinstitutes.be/Activities/Higher%20spin/solvay1proc.pdf

  17. Deser, S., Waldron, A.: Phys. Rev. Lett. 87, 031601 (2001); Nucl. Phys. B 607, 577 (2001)

    Google Scholar 

  18. Metsaev R.R. (2006). Phys. Lett. B 643: 205

    ADS  MathSciNet  Google Scholar 

  19. de Medeiros, P., Hull, C.: JHEP 0305, 019 (2003); Commun. Math. Phys. 235, 255 (2003)

  20. Dubois-Violette, M., Henneaux, M.: Lett. Math. Phys. 49, 245 (1999); Edgara, S.B., Senovilla, J.M.M.: J. Geom. Phys. 56, 2153(2006); Olver, P.J.: Differential hyperforms I. Univ. of Minnesota report 82–101; Invariant theory and differential equations. In: Koh, S. Invariant theory, Berlin-Heidelberg-New York, Springer-Verlag, 1987, p. 62; Dubois-Violette, M., Henneaux, M.: Lett. Math. Phys. 49, 245 (1999); Commun. Math. Phys. 226, 393 (2002)

  21. Bekaert, X., Boulanger, N.: Tensor gauge fields in arbitrary representations of GL(D,R). II: Quadratic actions. Commun. Math. Phys. 271, no. 3, 723–773 (2007); Phys. Lett. B 561, 183 (2003)

    Google Scholar 

  22. Deriglazov A.A. and Gitman D.M. (1999). Mod. Phys. Lett. A 14: 709

    Article  ADS  MathSciNet  Google Scholar 

  23. Christensen S.M. and Duff M.J. (1979). Nucl. Phys. B 154: 301

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Warner N.P. (1982). Proc. Roy. Soc. Lond. A 383: 217

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group. Rolf Berndt, Ralf Schmidt (eds.) Baston: Birkhäuser Verlag, 1998

  26. Deser S. and Zumino B. (1977). Phys. Rev. Lett. 38: 1433

    Article  ADS  Google Scholar 

  27. Townsend P.K. (1977). Phys. Rev. D 15: 2802

    Article  ADS  MathSciNet  Google Scholar 

  28. Kuzenko S.M. and Yarevskaya Z.V. (1996). Mod. Phys. Lett. A 11: 1653

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Howe P.S., Penati S., Pernici M. and Townsend P.K. (1988). Phys. Lett. B 215: 555

    Article  ADS  MathSciNet  Google Scholar 

  30. Howe P.S., Penati S., Pernici M. and Townsend P.K. (1989). Class. Quant. Grav. 6: 1125

    Article  ADS  MathSciNet  Google Scholar 

  31. Bastianelli F., Benincasa P. and Giombi S. (2005). JHEP 0504: 010

    Article  ADS  MathSciNet  Google Scholar 

  32. Bastianelli F., Benincasa P. and Giombi S. (2005). JHEP 0510: 114

    Article  ADS  MathSciNet  Google Scholar 

  33. Coles R.A. and Papadopoulos G. (1990). Class. Quant. Grav. 7: 427

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Hull C.M., http://arxiv.org/list/hep-th/9910028, 1999

  35. Marcus N. (1995). Nucl. Phys. B 439: 583

    Article  MATH  ADS  Google Scholar 

  36. Warner N.P. (1982). Proc. Roy. Soc. Lond. A 383: 207

    MATH  ADS  MathSciNet  Google Scholar 

  37. Hull C.M. and Vazquez-Bello J.L. (1994). Nucl. Phys. B 416: 173

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Halling R. and Lindeberg A. (1990). Class. Quant. Grav. 7: 2341

    Article  ADS  MathSciNet  Google Scholar 

  39. Bekaert, X., Cnockaert, S., Iazeolla, C., Vasiliev, M.A.: http://arxiv.org/list/hep-th/0503128, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hallowell.

Additional information

Communicated by G.W. Gibbons

Dedicated to the memory of Tom Branson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallowell, K., Waldron, A. Supersymmetric Quantum Mechanics and Super-Lichnerowicz Algebras. Commun. Math. Phys. 278, 775–801 (2008). https://doi.org/10.1007/s00220-007-0393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0393-1

Keywords

Navigation