Skip to main content
Log in

Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the 1-d quantum harmonic oscillator is stable under spatially localized, time quasi-periodic perturbations on a set of Diophantine frequencies of positive measure. This proves a conjecture raised by Enss-Veselic in their 1983 paper [EV] in the general quasi-periodic setting. The motivation of the present paper also comes from construction of quasi-periodic solutions for the corresponding nonlinear equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu S. (1999). On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets. Discrete Comput. Geom. 22: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellissard, J.: Stability and chaotic behavior of quantum rotators in stochastic process in classical and quantum systems. Lecture Notes in Physics, vol. 262. Springer, Berlin (1986)

  3. Bourgain J. (1994). Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. IMRN 11: 475–497

    Article  MathSciNet  Google Scholar 

  4. Bourgain J. (1998). Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math 148: 363–439

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain J. (2005). Green’s function estimates for latttice Schrödinger operators and applications. Princeton University Press, Princeton, NJ

    Google Scholar 

  6. Bourgain J., Goldstein M. and Schlag W. (2002). Anderson localization for Schrödinger operators on \({\mathbb{Z}}^2\) with quasi-periodic potential. Acta Math. 188: 41–86

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgain J. and Wang W.-M. (2004). Anderson localization for time quasi-periodic random Schrödinger and wave equations. Commun. Math. Phys. 248: 429–466

    Article  ADS  MathSciNet  Google Scholar 

  8. Bourgain J. and Wang W.-M. (2008). Quasi-periodic solutions for nonlinear random Schrödinger. J. European Math. Society 10(1): 1–45

    Article  MATH  MathSciNet  Google Scholar 

  9. Boutel de Monvel-Berthier A., Boutet de Monvel L. and Lebeau G. (1992). Sur les valeurs propres d’un oscillateur harmonique perturbe. J. d’Anal. Math. 58: 39–60

    Google Scholar 

  10. Combescure M. (1986). A quantum particle in a quadrupole radio-frequency trap. Ann. Inst. Henri. Poincare 44: 293–314

    MATH  MathSciNet  Google Scholar 

  11. Combescure, M.: The quantum stability problem for time-periodic perturbation of the harmonic oscillator. Ann. Inst. Henri. Poincare 47, 63–83, 451–454 (1987)

    Google Scholar 

  12. Craig W. and Wayne C.E. (1993). Newton’s method and periodic solutions of nonlinear wave equation. Commun. Pure Appl. Math. 46: 1409–1498

    Article  MATH  MathSciNet  Google Scholar 

  13. Cycon H.L., Froese R.G., Kirsch W. and Simon B. (1987). Schrödinger Operators. Springer-Verlag, Berlin-Heidelberg- New York

    MATH  Google Scholar 

  14. Duclos P. and Stovicek P. (1996). Floquet Hamiltonians with pure point spectrum. Commun. Math. Phys. 177: 327–347

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Eliasson L.H. (2001). Almost reducibility of linear quasi-periodic systems. Proceedings of Symp in Pure Math 69: 679–705

    MathSciNet  Google Scholar 

  16. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. available at http://theory.physics.unige.ch/mp_arc/c/06/06-144pdf, 2006

  17. Enss V. and Veselic K. (1983). Bound states and propagating states for time-dependent Hamiltonians. Ann IHP 39(2): 159–191

    MATH  MathSciNet  Google Scholar 

  18. Fröhlich J. and Spencer T. (1983). Absence of diffusion in the Anderson tight binding model for large disorder. Commun. Math. Phys. 88: 151–184

    Article  MATH  ADS  Google Scholar 

  19. Germinet F. and de Bievre S. (1998). Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194: 323–341

    Article  MATH  ADS  Google Scholar 

  20. Germinet F. and Klein A. (2001). Bootstrap multiscale analysis and localization in random media. Commun. Math. Phys. 222: 415–448

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Gradshteyn I.S. and Ryzhik I.M. (2000). Table of Integrals, Series and Products (6th ed). Academic Press, London- New York

    MATH  Google Scholar 

  22. Graffi S. and Yajima K. (2000). Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator. Commun. Math. Phys. 215: 245–250

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Hagedorn G., Loss M. and Slawny J. (1986). Non stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations. J. Phys. A 19(4): 521–531

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Howland J.S. (1974). Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207: 315–335

    Article  MATH  MathSciNet  Google Scholar 

  25. Jauslin H.R. and Lebowitz J.L. (1991). Spectral and stability aspects of quantum chaos. Chaos 1: 114–121

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Kapitanski L., Rodnianski I. and Yajima K. (1997). On the fundamental solution of a perturbed harmonic oscillator. Topo. Methods Nonlinear Anal. 9(1): 77–106

    MATH  MathSciNet  Google Scholar 

  27. Kato T. (1980). Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York, Springer-Verlag

    MATH  Google Scholar 

  28. Kuksin, S.: Hamiltonian perturbation of infinite-dimensional linear systems. Funts. Anal. Prilozh. 21, no. 3, 22–37 (1987); English translation in Funct. Anal. Appl. 21, 192–205 (1987)

  29. Kuksin, S.: Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lect. Notes. Math. 1556, Berlin-Heidelberg-New York: Springer-Verlag, 1993

  30. Kuksin S. and Pöschel J. (1996). Invariant Cantor manifolds of quasi-periodic osillations for a nonlinear Schrödinger equation. Ann. Math. 143: 149–179

    Article  MATH  Google Scholar 

  31. Prudnikov A.P., Brychkov Yu.A. and Marichev O.I. (1986). Integrals and Series, Vol I. Gordon and Breach Science Publishers, New York

    Google Scholar 

  32. Schnol, I.: On the behaviour of the Schrödinger equation. Mat. Sb. (Russian) 273–286, (1957)

  33. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Math. Notes 42, Princeton, NJ: Princeton University Press, 1993

  34. Wang, W.-M.: Quasi-periodic solutions of nonlinearly perturbed quantum harmonic oscillator. In preparation

  35. Yajima K. (1982). Resonances for the AC-Stark effect. Commun. Math. Phys. 78: 331–352

    Article  ADS  MathSciNet  Google Scholar 

  36. Yajima, K.: On smoothing property of Schrödinger propagators. Lect. Notes Math. 1450, Berling-Heidelberg-New York: Springer, 1989, pp. 20–35

  37. Yajima K. (1991). Schrödinger evolution equations with magnetic fields. J. d’Anal. Math. 56: 29–76

    Article  MATH  MathSciNet  Google Scholar 

  38. Yajima K. and Kitada H. (1983). Bound states and scattering states for time periodic Hamiltonians. Ann. IHP, A 39: 145–157

    MATH  MathSciNet  Google Scholar 

  39. Zelditch S. (1983). Reconstruction of singularities for solutions of Schrödinger’s equation. Commun. Math. Phys. 90: 1–26

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. -M. Wang.

Additional information

Communicated by B. Simon

Partially supported by NSF grant DMS-05-03563.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.M. Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations. Commun. Math. Phys. 277, 459–496 (2008). https://doi.org/10.1007/s00220-007-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0379-z

Keywords

Navigation