Skip to main content
Log in

Logarithmic Intertwining Operators and Vertex Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This is the first in a series of papers where we study logarithmic intertwining operators for various vertex subalgebras of Heisenberg and lattice vertex algebras. In this paper we examine logarithmic intertwining operators associated with rank one Heisenberg vertex operator algebra M(1) a , of central charge 1 − 12a 2. We classify these operators in terms of depth and provide explicit constructions in all cases. Our intertwining operators resemble puncture operators appearing in quantum Liouville field theory. Furthermore, for a = 0 we focus on the vertex operator subalgebra L(1, 0) of M(1)0 and obtain logarithmic intertwining operators among indecomposable Virasoro algebra modules. In particular, we construct explicitly a family of hidden logarithmic intertwining operators, i.e., those that operate among two ordinary and one genuine logarithmic L(1, 0)-module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamović D. and Milas A. (2007). Logarithmic intertwining operators and \({\mathcal{W}}(2,2p-1)\)-algebras. J. Math. Phys. 48(7): 073504

    Article  MathSciNet  Google Scholar 

  2. Bredthauer A. and Flohr M. (2002). Boundary States in c =  − 2 Logarithmic Conformal Field Theory. Nucl. Phys. B 639: 450–470

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Dong C. (1993). Vertex algebras associated with even lattices. J. Alg. 161(1): 245–265

    Article  MATH  Google Scholar 

  4. Dong C. and Griess R. (1998). Rank one lattice type vertex operator algebras and their automorphism groups. J. Alg. 208: 262–275

    Article  MATH  MathSciNet  Google Scholar 

  5. Dong C., Li H. and Mason G. (1997). Regularity of rational vertex operator algebras. Adv. Math. 132: 148–166

    Article  MATH  MathSciNet  Google Scholar 

  6. Fjelstad J., Fuchs J., Hwang S., Semikhatov A.M. and Yu I. (2002). Tipunin, Logarithmic conformal field theories via logarithmic deformations. Nuclear Phys. B 633: 379–413

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Flohr M. (1996). On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Mod. Phys. A 11: 4147–4172

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Flohr M. (1998). Singular vectors in logarithmic conformal field theory. Nucl. Phys. B 514: 523–552

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Flohr M. (2003). Bits and pieces in logarithmic conformal field theory. Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). Int. J. Mod. Phys. A 18: 4497–4591

    Article  ADS  MathSciNet  Google Scholar 

  10. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, 88, Providence, RI: Amer. Math. Soc., 2001

  11. Frenkel, E., Kac, V., Radul, A., Wang, W.: \({\mathcal{W}}_{1+\infty}\) and \({\mathcal{W}}({{\mathfrak{gl}}}_N)\) with central charge N. Commun. Math. Phys. 170, 337–357 (1995)

    Google Scholar 

  12. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs Amer. Math. Soc. 104, Providence, RI: Amer. Math. Soc., 1993

  13. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Appl. Math., 134, New York: Academic Press, 1988

  14. Gaberdiel M. (2001). Fusion rules and logarithmic representations of a WZW model at fractional level. Nucl. Phys. B 618: 407–436

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Gaberdiel, M.: An algebraic approach to logarithmic conformal field theory. In: Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). Int. J. Mod. Phys. A 18, 4593–4638 (2003)

  16. Gaberdiel M. and Kausch H.G. (1996). A rational logarithmic conformal field theory. Phy. Lett. B 386: 131–137

    Article  ADS  MathSciNet  Google Scholar 

  17. Gaberdiel M. and Kausch H.G. (1996). Indecomposable fusion products. Nucl. Phy. B 477: 293–318

    Article  ADS  MathSciNet  Google Scholar 

  18. Gaberdiel M. and Kausch H.G. (1999). A local logarithmic conformal field theory. Nucl. Phys. B 538: 631–658

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Gurarie V. (1993). Logarithmic operators in conformal field theory. Nucl. Phys. B 410: 535–549

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. http://arxiv.org/list/math.QA/0406291, 2004

  21. Huang Y.-Z. (2005). Vertex operator algebras, the Verlinde conjecture and modular tensor categories. Proc. Nat. Acad. Sci. 102(15): 5352–5356

    Article  MATH  ADS  Google Scholar 

  22. Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Lie Theory and Geometry, in honor of Bertram Kostant, ed. R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac, Boston: Birkhäuser, 1994, pp. 349–383

  23. Huang Y.-Z., Lepowsky J. and Zhang L. (2006). A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math. 17(8): 975–1012

    Article  MATH  MathSciNet  Google Scholar 

  24. Kac, V.: Infinite-dimensional Lie algebras. Third edition, Cambridge: Cambridge University Press, 1990

  25. Kac, V.: Vertex algebras for beginners. University Lectures Series, Vol. 10, Providence, RI: Amer. Math. Soc., 1998

  26. Kac, V., Raina, A.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. In: Advanced Series in Mathematical Physics, Vol 2, River Edge, NJ: World Scientific, 1987

  27. Lepowsky J. (2005). From the representation theory of vertex operator algebras to modular tensor categories in conformal field theory. Proc. Nat. Acad. Sci. 102(15): 5304–5305

    Article  MATH  MathSciNet  Google Scholar 

  28. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, 227, Boston: Birkhäuser, 2003

  29. Li, H.: Representation theory and a tensor product theory for vertex operator algebras. PhD thesis, Rutgers University, 1994

  30. Li H. (1996). Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Alg. 109: 143–195

    Article  MATH  Google Scholar 

  31. Milas, A.: Weak modules and logarithmic intertwining operators for vertex operator algebras. In: Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000), 201–225, Contemp. Math. 297, Providence, RI: Amer. Math. Soc., 2002, pp. 201–225

  32. Milas A. (2002). Fusion rings for degenerate minimal models. J. Alg. 254(2): 300–335

    Article  MATH  MathSciNet  Google Scholar 

  33. Milas, A.: In preparation

  34. Miyamoto M. (2004). Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J. 122: 51–91

    Article  MATH  MathSciNet  Google Scholar 

  35. Miyamoto, M.: A theory of tensor product for vertex operator algebras satisfying C 2-cofiniteness. http://arxiv.org/list/math.QA/0309350 , 2003

  36. Seiberg N. (1990). Notes on quantum Liouville theory and quantum gravity. Progress of Theoretical Physics, Supplement No. 102: 319–349

    Article  ADS  MathSciNet  Google Scholar 

  37. Zamolodchikov A.B. (1996). Zamolodchikov, Al.B.: Structure constants and conformal bootstrap in Liouville Field Theory. Nucl. Phys. B 477: 577–605

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antun Milas.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milas, A. Logarithmic Intertwining Operators and Vertex Operators. Commun. Math. Phys. 277, 497–529 (2008). https://doi.org/10.1007/s00220-007-0375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0375-3

Keywords

Navigation