Skip to main content
Log in

Uniqueness and Examples of Compact Toric Sasaki-Einstein Metrics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In [11] it was proved that, given a compact toric Sasaki manifold with positive basic first Chern class and trivial first Chern class of the contact bundle, one can find a deformed Sasaki structure on which a Sasaki-Einstein metric exists. In the present paper we first prove the uniqueness of such Einstein metrics on compact toric Sasaki manifolds modulo the action of the identity component of the automorphism group for the transverse holomorphic structure, and secondly remark that the result of [11] implies the existence of compatible Einstein metrics on all compact Sasaki manifolds obtained from the toric diagrams with any height, or equivalently on all compact toric Sasaki manifolds whose cones have flat canonical bundle. We further show that there exists an infinite family of inequivalent toric Sasaki-Einstein metrics on \(S^5 \sharp k(S^2 \times S^3)\) for each positive integer k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abreu, M.: Kähler geometry of toric manifolds in symplectic coordinates. Fields Institute Comm. 35, Providence, RI: Amer. Math. Soc., 2003, pp. 1–24

  2. Altman, K.: Toric \({\mathbb{Q}}\) -Gorenstein singularities. Prepint, 1994

  3. Argurio, R., Bertolini, M., Closset, C., Cremonesi, S.: On Stable Non-Supersymmetric Vacua at the Bottom of Cascading Theories. JHEP 0609, 030(2006)

    Google Scholar 

  4. Boyer C.P., Galicki K., Kollár J. (2005). Einstein metrics on spheres. Ann. of Math. 162(1): 557–580

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyer C.P., Galicki K., Nakamaye M. (2003). On the geometry of Sasakian-Einstein 5-manifolds. Math. Ann. 325(3): 485–524

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyer, C.P., Galicki, K., Ornea, L.: Constructions in Sasakian geometry. http://arxiv.org/list/math.DG/0602233, 2006, to appear in math.zeit

  7. Boyer, C.P., Galicki, K., Simanca, S.R.: Canonical Sasakian metrics. http://arxiv.org/list/math.DG/0604325, 2006

  8. Chen X.X. (2000). The space of Kähler metrics. J. Diff. Geom. 56: 189–234

    MATH  Google Scholar 

  9. Cvetič, M., Lü, H., Page, D.N., Pope, C.N.: New Einstein-Sasaki Spaces in Five and Higher Dimensions. Phys. Rev. Lett. 95, 071101 (2005)

    Google Scholar 

  10. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar’ (Eliashberg et al eds.), Providence, RI: Amer. Math. Soc. 1999, pp. 13–33

  11. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. http://arxiv.org/list/math.DG/0607586, 2006

  12. Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004). Sasaki-Einstein Metrics on S 2 × S 3. Adv. Theor. Math. Phys. 8: 711–734

    MATH  MathSciNet  Google Scholar 

  13. Guan D. (1999). On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles. Math. Res. Letters 6: 547–555

    MATH  Google Scholar 

  14. Hanany, A., Kazakopoulos, P., Wecht, B.: A New Infinite Class of Quiver Gauge Theories. JHEP 0508, 054(2005)

    Google Scholar 

  15. Kollár, J.: Einstein metrics on connected sums of S 2 × S 3. http://arxiv.org/list/math.DG/0402141, (2004)

  16. Lerman E. (2003). Contact toric manifolds. J. Symplectic Geom. 1(4): 785–828

    MATH  MathSciNet  Google Scholar 

  17. Lerman E. (2004). Homotopy groups of K-contact toric manifolds. Trans. Amer. Math. Soc. 356(4): 4075–4084

    Article  MATH  MathSciNet  Google Scholar 

  18. Mabuchi T. (1987). Some Sympletic geometry on compact Kähler manifolds. I. Osaka J. Math. 24: 227–252

    MATH  MathSciNet  Google Scholar 

  19. Martelli D., Sparks J. (2005). Toric Sasaki-Einstein metrics on S 2 × S 3. Phys. Lett. B 621: 208–212

    Article  ADS  MathSciNet  Google Scholar 

  20. Martelli D., Sparks J., Yau S.-T. (2006). The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds. Commun. Math. Phys. 268: 39–65

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki-Einstein manifolds and volume minimization. http://arxiv.org/list/hepth/0603021, 2006

  22. Nishikawa S., Tondeur P. (1988). Transversal infinitesimal automorphisms for harmonic Kähler foliation. Tohoku Math. J. 40: 599–611

    MATH  MathSciNet  Google Scholar 

  23. Oda, T.: Convex bodies and algebraic geometry - An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 15. Berlin: Springer-Verlag, 1988

  24. Oota T., Yasui Y. (2007). New Example of Infinite Family of Quiver Gauge Theories. Nucl. Phys. B 762: 377–391

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Semmes S. (1992). Complex Monge-Ampère and symplectic manifolds. Amer. J. Math. 114: 495–550

    Article  MATH  MathSciNet  Google Scholar 

  26. van Coevering, C.: Toric surfaces and Sasakian-Einstein 5-manifolds. http://arxiv.org/list/math.DG/0607721, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Futaki.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K., Futaki, A. & Ono, H. Uniqueness and Examples of Compact Toric Sasaki-Einstein Metrics. Commun. Math. Phys. 277, 439–458 (2008). https://doi.org/10.1007/s00220-007-0374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0374-4

Keywords

Navigation