Skip to main content
Log in

Optimal Decay Estimates on the Linearized Boltzmann Equation with Time Dependent Force and their Applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Although the decay in time estimates of the semi-group generated by the linearized Boltzmann operator without forcing have been well established, there is no corresponding result for the case with general external force. This paper is mainly concerned with the optimal decay estimates on the solution operator in some weighted Sobolev spaces for the linearized Boltzmann equation with a time dependent external force. No time decay assumption is made on the force. The proof is based on both the energy method through the macro-micro decomposition and the L p-L q estimates from the spectral analysis. The decay estimates thus obtained are applied to the study on the global existence of the Cauchy problem to the nonlinear Boltzmann equation with time dependent external force and source. Precisely, for space dimension n ≥ 3, the global existence and decay rates of solutions to the Cauchy problem are obtained under the condition that the force and source decay in time with some rates. This time decay restriction can be removed for space dimension n ≥ 5. Moreover, the existence and asymptotic stability of the time periodic solution are given for space dimension n ≥ 5 when the force and source are time periodic with the same period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga H. (2005). Time periodic solutions of the Navier-Stokes equations in unbounded cylindrical domains—Leray’s problem for periodic flows. Arch. Rat. Mech. Anal. 178: 301–325

    Article  MATH  Google Scholar 

  2. Bellomo N. and Toscani G. (1985). On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic behaviour. J. Math. Phys. 26: 334–338

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory, Edited by Perthame, B., Desvillettes, L., Series in Applied Mathematics 4, Paris: Gauthier-Villars, 2000

  4. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences 106. New York: Springer-Verlag, 1994. viii+347 pp.

  5. Desvillettes L. and Villani C. (2005). On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. Math. 159(2): 245–316

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. DiPerna R.J. and Lions P.L. (1989). On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130: 321–366

    Article  MathSciNet  Google Scholar 

  7. Duan R.J., Ukai S., Yang T. and Zhao H.J. (2007). Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math. Mod. Meth. Appl. Sci. 17(5): 737–758

    Article  MATH  MathSciNet  Google Scholar 

  8. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates to the stationary solutions for the Boltzmann equation with potential force. Preprint, 2006

  9. Duan R.J., Yang T. and Zhu C.J. (2006). Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete and Continuous Dynamical Systems 16: 253–277

    Article  MATH  MathSciNet  Google Scholar 

  10. Feireisal E., Matušu̇-Nečasovà Š., Petzeltovà H. and Straškraba I. (1999). On the motion of a viscous compressible fluid driven by a time periodic external force. Arch. Rat. Mech. Anal. 149: 69–96

    Article  Google Scholar 

  11. Glassey R. (1996). The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. xii+241 pp.

    MATH  Google Scholar 

  12. Grad, H.: Asymptotic Theory of the Boltzmann Equation II. In: Rarefied Gas Dynamics, J.A. Laurmann, ed., Vol. 1, New York: Academic Press, 1963 26–59

  13. Guo Y. (2004). The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53: 1081–1094

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo Y. (2002). The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9): 1104–1135

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo Y. (2001). The Vlasov-Poisson-Boltzmann system near vacuum. Commun. Math. Phys. 218(2): 293–313

    Article  MATH  ADS  Google Scholar 

  16. Illner R. and Shinbrot M. (1984). Global existence for a rare gas in an infinite vacuum. Commun. Math. Phys. 95: 217–226

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Liu T.-P., Yang T. and Yu S.-H. (2004). Energy method for the Boltzmann equation. Physica D 188(3–4): 178–192

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Matsumura A. and Nishida T. (1979). The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A 55: 337–342

    MATH  MathSciNet  Google Scholar 

  19. Nishida T. and Imai K. (1976/77). Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci. 12: 229–239

    MathSciNet  Google Scholar 

  20. Shibata Y. and Tanaka K. (2007). Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid. Comput. Math. Appl. 53: 605–623

    Article  MATH  MathSciNet  Google Scholar 

  21. Strain R.M. (2006). The Vlasov–Maxwell–Boltzmann System in the Whole Space. Commun. Math. Phys. 268(2): 543–567

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Strain R.M. and Guo Y. (2006). Almost exponential decay near Maxwellian. Commun. Par. Differ. Eqs. 31(3): 417–429

    Article  MATH  MathSciNet  Google Scholar 

  23. Ukai S. (1974). On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proceedings of the Japan Academy 50: 179–184

    Article  MATH  MathSciNet  Google Scholar 

  24. Ukai S. (1976). Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace. C. R. Acad. Sci. Paris 282A: 317–320

    MathSciNet  Google Scholar 

  25. Ukai, S.: Solutions of the Boltzmann equation. In: Pattern and Waves-Qualitive Analysis of Nonlinear Differential Equations, Mimura, M., Nishida, T., eds., Studies of Mathematics and Its Applications, Vol. 18, Tokyo: Kinokuniya-North-Holland, 1986, pp. 37–96

  26. Ukai S. (2006). Time-periodic solutions of the Boltzmann equation. Discrete Cont. Dyn. Syst. 14A: 579–596

    MathSciNet  Google Scholar 

  27. Ukai, S., Yang, T.: Mathematical Theory of Boltzmann Equation. Lecture Notes Series-No. 8, Hong Kong: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, March 2006

  28. Ukai S. and Yang T. (2006). The Boltzmann equation in the space \(L^2\cap L^\infty_\beta\) : Global and time-periodic solutions. Anal. Appl. 4: 263–310

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang T. and Zhao H.J. (2006). Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 268(3): 569–605

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Valli A. (1983). Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10: 607–647

    MATH  MathSciNet  Google Scholar 

  31. Valli A. and Zajaczkowski W.M. (1986). Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103: 259–296

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, Vol. I, Amsterdam: North-Holland, 2002, pp. 71–305

  33. Villani, C.: Hypocoercive diffusion operators. Proceedings of the International Congress of Mathematicians, Madrid (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Yang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, R., Ukai, S., Yang, T. et al. Optimal Decay Estimates on the Linearized Boltzmann Equation with Time Dependent Force and their Applications. Commun. Math. Phys. 277, 189–236 (2008). https://doi.org/10.1007/s00220-007-0366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0366-4

Keywords

Navigation