Skip to main content
Log in

Weight Functions and Drinfeld Currents

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A universal weight function for a quantum affine algebra is a family of functions with values in a quotient of its Borel subalgebra, satisfying certain coalgebraic properties. In representations of the quantum affine algebra it gives off-shell Bethe vectors and is used in the construction of solutions of the qKZ equations. We construct a universal weight function for each untwisted quantum affine algebra, using projections onto the intersection of Borel subalgebras of different types, and study its functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert T.D., Boss H., Flume R. and Ruhlig K. (2000). Resolution of the nested hierarchy for rational \({\mathfrak{sl}}(n)\) models. J. Phys. A 33: 4963–4980

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Babudjian H and Flume R. (1994). Off-shell Bethe Ansatz equation for Gaudin magnets and solution of Knizhnik-Zamolodchikov equation. Mod. Phys. Lett. A 9: 2029–2040

    Article  ADS  Google Scholar 

  3. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994); Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 165, 193–199 (1994)

    Google Scholar 

  4. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of groups, CMS Conf. Proc. 16, 1994, Providence, RI: Amer. Math. Soc., 1995, pp. 59–78

  5. Damiani I. (1998). La R-matrice pour les algèbres quantiques de type affine non tordu. Ann. Scient. Éc. Norm. Sup. 31(4): 493–523

    MATH  MathSciNet  Google Scholar 

  6. Ding J. and Khoroshkin S. (2000). Weyl group extension of quantized current algebras. Transform. Groups 5(1): 35–59

    Article  MathSciNet  Google Scholar 

  7. Ding J., Khoroshkin S. and Pakuliak S. (2000). Factorization of the universal R-matrix for \(U_q(\widehat{{{\mathfrak{sl}}}}_2)\). Theor. and Math. Phys. 124(2): 1007–1036

    Article  MATH  MathSciNet  Google Scholar 

  8. Ding J., Khoroshkin S. and Pakuliak S. (2000). Integral presentations for the universal R-matrix. Lett. Math. Phys. 53(2): 121–141

    Article  MATH  MathSciNet  Google Scholar 

  9. Ding J. and Frenkel I.B. (1993). Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{{{\mathfrak{gl}}}}_N)\). Commun. Math. Phys. 156(2): 277–300

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Drinfeld, V.: Quantum groups. In: Proc. ICM Berkeley (1986), Vol. 1, Providence, RI: Amer. Math. Soc., 1987, pp. 789–820

  11. Drinfeld V. (1988). New realization of Yangians and quantum affine algebras. Sov. Math. Dokl. 36: 212–216

    MathSciNet  Google Scholar 

  12. Enriquez B. (2000). On correlation functions of Drinfeld currents and shuffle algebras. Transform. Groups 5(2): 111–120

    Article  MATH  MathSciNet  Google Scholar 

  13. Enriquez B. (2003). Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves. Selecta Math. (N.S.) 9(1): 1–61

    Article  MATH  MathSciNet  Google Scholar 

  14. Enriquez B. and Felder G. (1998). Elliptic quantum groups \(E_{\tau,\eta}({{\mathfrak{sl}}}_2)\). Commun. Math. Phys. 195(3): 651–689

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Enriquez B. and Rubtsov V. (1999). Quasi-Hopf algebras associated with \({\mathfrak{sl}}_2\) and complex curves. Israel J. Math. 112: 61–108

    MathSciNet  Google Scholar 

  16. Kassel C. (1995). Quantum Groups. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  17. Khoroshkin S. and Pakuliak S. (2005). Weight function for \(U_q(\widehat{{\mathfrak{sl}}}_3)\). Theor. and Math. Phys. 145(1): 1373–1399

    Article  Google Scholar 

  18. Khoroshkin, S., Pakuliak, S.: Method of projections for an universal weight function of the quantum affine algebra \(U_q(\widehat{{\mathfrak{sl}}}_{N+1})\) . In: Proceedings of the International Workshop Classical and quantum integrable systems, January 23–26, 2006, Protvino. Theor. and Math. Phys. 150 (2), 244–258 (2007)

  19. Khoroshkin S., Pakuliak S. and Tarasov V. (2007). Off-shell Bethe vectors and Drinfeld currents. J. Geom. Phys. 57: 1713–1732

    Article  MATH  MathSciNet  Google Scholar 

  20. Khoroshkin, S., Tolstoy, V.: Twisting of quantum (super)algebras. Connection of Drinfeld’s and Cartan-Weyl realizations for quantum affine algebras. MPI Preprint MPI/94-23, http://arxiv.org/lis/hepth/9404036, 1994

  21. Khoroshkin, S., Tolstoy, V.: The Cartan-Weyl basis and the universal \({\mathcal{R}}\) -matrix for quantum Kac-Moody algebras and superalgebras. In: Quantum Symmetries, River Edge, NJ: World Sci. Publ. 1993, pp. 336–351

  22. Khoroshkin S. and Tolstoy V.N. (1993). On Drinfeld realization of quantum affine algebras. J. Geom. Phys. 11(1–4): 445–452

    Article  MATH  MathSciNet  Google Scholar 

  23. Kulish P. and Reshetikhin N. (1983). Diagonalization of GL(N)-invariant transfer matrices and quantum N-wave system (Lee model). J. Phys. A: Math. Gen. 16: L591–L596

    Article  ADS  MathSciNet  Google Scholar 

  24. Lusztig G. (1993). Introduction to quantum groups. Birkhäuser, Basel

    MATH  Google Scholar 

  25. Reshetikhin N. (1985). Integrable models of one-dimensional quantum magnets with the \({\mathfrak{o}}(n)\) and \({\mathfrak{sp}}(2k)\) symmetry. Theor. Math. Phys. 63: 347–366

    MathSciNet  Google Scholar 

  26. Reshetikhin N. and Semenov-Tian-Shansky M. (1990). Central extensions of quantum current groups. Lett. Math. Phys. 19(2): 133–142

    Article  MATH  MathSciNet  Google Scholar 

  27. Smirnov, F.: Form factors in completely integrable models of quantum field theory. Adv. Series in Math. Phys., Vol. 14, Singapore: World Scientific, 1992

  28. Sweedler, M.E.: Hopf Algebras. Reading, Ma: Addison-Wesley, 1969

  29. Tarasov V.O. (1988). An algebraic Bethe ansatz for the Izergin-Korepin R-matrix. Theor. and Math. Phys. 76(2): 793–804

    Article  ADS  MathSciNet  Google Scholar 

  30. Tarasov V. and Varchenko A. (1995). Jackson integrals for the solutions to Knizhnik-Zamolodchikov equation. St. Petersburg Math. J. 6(2): 275–313

    MathSciNet  Google Scholar 

  31. Tarasov V. and Varchenko A. (1997). Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups. Astérisque 246: 1–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Enriquez.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enriquez, B., Khoroshkin, S. & Pakuliak, S. Weight Functions and Drinfeld Currents. Commun. Math. Phys. 276, 691–725 (2007). https://doi.org/10.1007/s00220-007-0351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0351-y

Keywords

Navigation