Skip to main content
Log in

From the N-body Schrödinger Equation to the Quantum Boltzmann Equation: a Term-by-Term Convergence Result in the Weak Coupling Regime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyze the asymptotic dynamics of a system of N quantum particles, in a weak coupling regime. Particles are assumed statistically independent at the initial time.

Our approach follows the strategy introduced by the authors in a previous work [BCEP1]: we compute the time evolution of the Wigner transform of the one-particle reduced density matrix; it is represented by means of a perturbation series, whose expansion is obtained upon iterating the Duhamel formula; this approach allows us to follow the arguments developed by Lanford [L] for classical interacting particles evolving in a low density regime.

We prove, under suitable assumptions on the interaction potential, that the complete perturbation series converges term-by-term, for all times, towards the solution of a Boltzmann equation.

The present paper completes the previous work [BCEP1]: it is proved there that a subseries of the complete perturbation expansion converges uniformly, for short times, towards the solution to the nonlinear quantum Boltzmann equation. This previous result holds for (smooth) potentials having possibly non-zero mean value. The present text establishes that the terms neglected at once in [BCEP1], on a purely heuristic basis, indeed go term-by-term to zero along the weak coupling limit, at least for potentials having zero mean.

Our analysis combines stationary phase arguments with considerations on the nature of the various Feynman graphs entering the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashcroft N.W., Mermin N.D. (1976). Solid state physics. Saunders, Philadelphia

    Google Scholar 

  2. Balescu R. (1975). Equilibrium and Nonequilibrium Statistical Mechanics. John Wiley & Sons, New-York

    MATH  Google Scholar 

  3. Benedetto D., Castella F., Esposito R., Pulvirenti M. (2004). Some Considerations on the derivation of the nonlinear Quantum Boltzmann Equation. J. Stat. Phys. 116(1–4): 381–410

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedetto D., Castella F., Esposito R., Pulvirenti M. (2005). On The Weak-Coupling Limit for Bosons and Fermions. Math. Mod. Meth. Appl. Sci. 15(12): 1811–1843

    Article  MATH  MathSciNet  Google Scholar 

  5. Benedetto D., Castella F., Esposito R., Pulvirenti M. (2006). Some Considerations on the derivation of the nonlinear Quantum Boltzmann Equation II: the low-density regime. J. Stat. Phys. 124(2–4): 951–996

    Article  MATH  MathSciNet  Google Scholar 

  6. Bohm A. (1979). Quantum Mechanics. Springer-Verlag, Texts and monographs in Physics. Berlin-Heidelberg-New York

    MATH  Google Scholar 

  7. Castella F. (2002). From the von Neumann equation to the Quantum Boltzmann equation II: identifying the Born series. J. Stat. Phys. 106(5/6): 1197–1220

    Article  MATH  MathSciNet  Google Scholar 

  8. Chapman S., Cowling T.G. (1970). The Mathematical Theory of Non-uniform Gases. Cambridge Univ. Press, Cambridge

    Google Scholar 

  9. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, Vol. 106, New York: Springer-Verlag, 1994

  10. Chuang, S.L.: Physics of optoelectronic devices. Wiley series in pure and applied optics, New-York: Wiley, 1995

  11. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique Quantique, I et II. Enseignement des Sciences, Vol. 16, Paris: Hermann, 1973

  12. Dürr D., Goldstain S., Lebowitz J.L. (1987). Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Commun. Math. Phys. 113(2): 209–230

    Article  MATH  ADS  Google Scholar 

  13. Eng D., Erdös L. (2005). The Linear Boltzmann Equation as the Low Density Limit of a random Schrödinger equation. Rev. Math. Phys. 17(6): 669–743

    Article  MATH  MathSciNet  Google Scholar 

  14. Erdös, L., Yau, H.T.: Linear Boltzmann Equation as Scaling Limit of Quantum Lorentz Gas. In: Advances in differential equations and mathematical physics (Atlanta, GA, 1997), Contemp. Math. 217, Providence, RI: Amer. Math. Soc., 1998, pp. 137–155

  15. Erdös L., Yau H.-T. (2000). Linear Boltzmann Equation as the Weak Coupling Limit of a Random Schrödinger Equation. Commun. Pure Appl. Math. 53(6): 667–735

    Article  MATH  Google Scholar 

  16. Erdös L., Salmhofer M., Yau H.-T. (2004). On the quantum Boltzmann equation. J. Stat. Phys. 116(1–4): 367–380

    Article  MATH  Google Scholar 

  17. Hugenholtz M.N. (1983). Derivation of the Boltzmann equation for a Fermi gas. J. Stat. Phys. 32: 231–254

    Article  MathSciNet  Google Scholar 

  18. Ho N.T., Landau L.J. (1997). Fermi gas in a lattice in the van Hove limit. J. Stat. Phys. 87: 821–845

    Article  MATH  MathSciNet  Google Scholar 

  19. Illner, R., Pulvirenti, M.: Global Validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Commun. Math. Phys. 105, 189–203 (1986), Erratum and improved result. Commun. Math. Phys. 121, 143–146 (1989)

    Google Scholar 

  20. Lanford, O. III: Time evolution of large classical systems. Lecture Notes in Physics, Vol. 38, E.J. Moser ed., Berlin-Heidelberg-New York: Springer-Verlag, 1975, pp. 1–111

  21. Kesten H., Papanicolaou G.C. (1980). A limit theorem for stochastic acceleration. Commun. Math. Phys. 78(1): 19–63

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Lions P.L., Paul T. (1993). Sur les mesures de Wigner. Revista Mat. Ibero Amer. 9(3): 553–618

    MATH  MathSciNet  Google Scholar 

  23. Markowich P.A., Ringhofer C.A., Schmeiser C. (1990). Semiconductor equations. Springer-Verlag, Vienna

    MATH  Google Scholar 

  24. Reed M., Simon B. (1979). Methods of modern mathematical physics III. Scattering theory. Academic Press, New York-London

    MATH  Google Scholar 

  25. Rosencher E., Vinter B. (2002). Optoelectronique. Dunod, Paris

    Google Scholar 

  26. Spohn H. (1977). Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17(6): 385–412

    Article  MathSciNet  Google Scholar 

  27. Uchiyama K. (1988). On the Boltzmann-Grad limit for the Broadwell model of the Boltzmann equation. J. Stat. Phys. 52(1/2): 331–355

    Article  MATH  MathSciNet  Google Scholar 

  28. Uehling E.A., Uhlembeck G.E. (1933). Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev. 43: 552–561

    Article  MATH  Google Scholar 

  29. Wigner E.P. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40: 749–759

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Benedetto.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, D., Castella, F., Esposito, R. et al. From the N-body Schrödinger Equation to the Quantum Boltzmann Equation: a Term-by-Term Convergence Result in the Weak Coupling Regime. Commun. Math. Phys. 277, 1–44 (2008). https://doi.org/10.1007/s00220-007-0347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0347-7

Keywords

Navigation