Skip to main content
Log in

The Bloch-Okounkov Correlation Functions of Classical Type

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Bloch and Okounkov introduced an n-point correlation function on the infinite wedge space and found an elegant closed formula in terms of theta functions. This function has connections to Gromov-Witten theory, Hilbert schemes, symmetric groups, etc., and it can also be interpreted as correlation functions on integrable \(\widehat{{\mathfrak{gl}}}_\infty\) -modules of level one. Such \(\widehat{ {\mathfrak{gl}}}_\infty\) -correlation functions at higher levels were then calculated by Cheng and Wang.

In this paper, generalizing the type A results, we formulate and determine the n-point correlation functions in the sense of Bloch-Okounkov on integrable modules over classical Lie subalgebras of \(\widehat{{\mathfrak{gl}}}_\infty\) of type B, C, D at arbitrary levels. As byproducts, we obtain new q-dimension formulas for integrable modules of type B, C, D and some fermionic type q-identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews G. (1976). The theory of partitions. Encyclopedia of Mathematics and its Applications 2, Reading, MA, Addison-Wesley

    Google Scholar 

  2. Bloch S. (1996). Zeta values and differential operators on the circle. J. Alg. 182: 476–500

    Article  MATH  MathSciNet  Google Scholar 

  3. Bloch S. and Okounkov A. (2000). The characters of the infinite wedge representation. Adv. in Math. 149: 1–60

    Article  MATH  MathSciNet  Google Scholar 

  4. Bröcker T. and tom Dieck T. (1985). Representations of Compact Lie Groups. Springer-Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  5. Cheng S.-J. and Lam N. (2003). Infinite-dimensional Lie superalgebras and hook Schur functions. Commun. Math. Phys. 238: 95–118

    MATH  ADS  MathSciNet  Google Scholar 

  6. Cheng S.-J. and Wang W. (2004). The Bloch-Okounkov correlation functions at higher levels. Transformation Groups 9: 133–142

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng S.-J. and Wang W. (2007). The correlation functions of vertex operators and Macdonald polynomials. J. Alg. Combin. 25: 43–56

    Article  MATH  MathSciNet  Google Scholar 

  8. Date E., Jimbo M., Kashiwara M. and Miwa T. (1981). Operator approach to the Kadomtsev-Petviashvili equation Transformation groups for soliton equations III. J. Phys. Soc. Japan 50: 3806–3812

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Date E., Jimbo M., Kashiwara M. and Miwa T. (1982). A new hierarchy of soliton equations of KP-type Transformation groups for soliton equations IV. Physics 4D: 343–365

    ADS  MathSciNet  Google Scholar 

  10. Feingold A. and Frenkel I. (1985). Classical affine algebras. Adv. in Math. 56: 117–172

    Article  MATH  MathSciNet  Google Scholar 

  11. Frenkel E., Kac V., Radul A. and Wang W. (1995). W 1+∞ and W(gl n ) with central charge N. Commun. Math. Phys. 170: 337–357

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Frenkel I. (1982). Representations of affine Lie algebras, Hecke modular forms and Kortweg-de Vries type equations. Lect. Notes. Math. 933: 71–110

    Article  MathSciNet  Google Scholar 

  13. Fulton W. and Harris J. (1991). Representation Theory: A First Course. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  14. Howe R. (1989). Remarks on classical invariant theory. Trans. AMS 313: 539–570

    Article  MATH  MathSciNet  Google Scholar 

  15. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Schur Lect. (Tel Aviv)(1992), Israel Math. Conf. Proc. 8, Ramat Gan: Bar Ilan Univ., pp.1–182

  16. Kac, V.: Vertex algebras for beginners. Second edition, University Lecture Series 10, Providence, RI: Amer. Math. Soc., 1998

  17. Kac V. and Radul A. (1996). Representation theory of the vertex algebra W 1+∞. Transformation Groups 1: 41–70

    Article  MATH  MathSciNet  Google Scholar 

  18. Kac V., Yan C.H. and Wang W. (1998). Quasifinite representations of classical Lie subalgebras of \({\mathcal{W}}_{1+\infty}\). Adv. in Math. 139: 56–140

    Article  MATH  MathSciNet  Google Scholar 

  19. Lepowsky J. (2000). Application of a “Jacobi identity” for vertex operator algebras to zeta values and differential operators. Lett. Math. Phys. 53: 87–103

    Article  MATH  MathSciNet  Google Scholar 

  20. Li W.-P., Qin Z. and Wang W. (2004). Hilbert schemes, integrable hierarchies, and Gromov-Witten theory. Internat. Math. Res. Notices 40: 2085–2104

    Article  MathSciNet  Google Scholar 

  21. Milas A. (2003). Formal differential operators, vertex operator algebras and zeta-values, II. J. Pure Appl. Algebra 183: 191–244

    Article  MathSciNet  Google Scholar 

  22. Miwa, T., Jimbo, M., Date, E.: Solitons. Differential Equations, Symmetries and Infinite Dimensional Algebras, (originally published in Japanese, 1993), Cambridge: Cambridge University Press, 2000

  23. Okounkov A. (2001). Infinite wedge and random partitions. Select Math., New Series 7: 1–25

    Article  MathSciNet  Google Scholar 

  24. Okounkov A. and Pandharipande R. (2006). Gromov-Witten theory, Hurwitz numbers and completed cycles. Ann. of Math. 2(163): 517–560

    Article  MathSciNet  Google Scholar 

  25. Wang W. (1999). Duality in infinite dimensional Fock representations. Commun. Contemp. Math. 1: 155–199

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang W. (2004). Correlation functions of strict partitions and twisted Fock spaces. Transformation Groups 9: 89–101

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhu Y. (1996). Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9: 237–302

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Wang.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, D.G., Wang, W. The Bloch-Okounkov Correlation Functions of Classical Type. Commun. Math. Phys. 276, 473–508 (2007). https://doi.org/10.1007/s00220-007-0344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0344-x

Keywords

Navigation