Skip to main content
Log in

Regge and Okamoto Symmetries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We will relate the surprising Regge symmetry of the Racah-Wigner 6 j symbols to the surprising Okamoto symmetry of the Painlevé VI differential equation. This then presents the opportunity to give a conceptual derivation of the Regge symmetry, as the representation theoretic analogue of the derivation in [5, 3] of the Okamoto symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics. In: Encyclopedia of Mathematics and its Applications, Vol. 8, Reading, MA:Addison-Wesley, 1981

  2. Biedenharn, L.C., Louck, J.D.: The Racah-Wigner algebra in quantum theory. In: Encyclopedia of Mathematics and its Applications, Vol. 9, Reading, MA:Addison-Wesley, 1981

  3. Boalch, P.P.: Six results on Painlevé VI. SMF, Séminaires et congrès, Vol. 14, to appear, available at http://arxiv.org/abs/math/0503043, 2005

  4. Boalch P.P. (2002). G-bundles, isomonodromy and quantum Weyl groups. Int. Math. Res. Not. no. 22: 1129–1166

    Article  MathSciNet  Google Scholar 

  5. Boalch P.P. (2005). From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. 90(3): 167–208

    Article  MATH  MathSciNet  Google Scholar 

  6. Fulton W., Harris J.: Representation theory. GTM, Vol. 129, Berlin Heidelberg-New York:Springer, 1991

  7. Gliske S., Klink W.H. and Ton-That T. (2005). Algorithms for computing generalized U(N) Racah coefficients. Acta Appl. Math. 88(2): 229–249

    Article  MATH  MathSciNet  Google Scholar 

  8. Granovskiĭ Ya.A. and Zhedanov A.S. (1988). Nature of the symmetry group of the 6 j-symbol. Sov. Phys. JETP 67(10): 1982–1985

    Google Scholar 

  9. Hitchin N.J. (1997). Geometrical aspects of Schlesinger’s equation. J. Geom. Phys. 23(3–4): 287–300

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Inaba M., Iwasaki K. and Saito M.-H. (2004). Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence. I. M. R. N. 2004(1): 1–30

    MATH  MathSciNet  Google Scholar 

  11. Jimbo M. and Miwa T. (1981). Monodromy preserving deformations of linear differential equations with rational coefficients II. Physica 2D: 407–448

    ADS  MathSciNet  Google Scholar 

  12. Kirillov, A.N., Yu, N.: Reshetikhin Representations of the algebra U q (sl(2)), q-orthogonal polynomials and invariants of links. In: Adv. Ser. Math. Phys., Vol. 7, V. Kac, ed., reprinted in: Adv. Ser. Math. Phys. Vol. 11, T. Kohno, ed., Singapore:World Scientific, 1989, pp. 285–339, 202–256 resp.

  13. Klink W.H. and Ton-That T. (1989). Calculation of Clebsch-Gordan and Racah coefficients using symbolic manipulation programs. J. Comput. Phys. 80(2): 453–471

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Okamoto K. (1987). Studies on the Painlevé equations. I. Sixth Painlevé equation P VI. Ann. Mat. Pura Appl. (4) 146: 337–381

    Article  MATH  MathSciNet  Google Scholar 

  15. Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Spectroscopic and group theoretical methods in physics, Bloch, F. ed., NewYork: John Wiley and Sons, 1968, pp. 1–58

  16. Racah G. (1942). Theory of complex spectra II. Phys. Rev. 62: 438–462

    Article  ADS  Google Scholar 

  17. Regge T. (1958). Symmetry properties of Clebsch–Gordan coefficients. Il Nuovo Cimento X: 544–545

    Article  Google Scholar 

  18. Regge T. (1959). Symmetry properties of Racah’s coefficients. Il Nuovo Cimento XI: 116–117

    Google Scholar 

  19. Roberts J. (1999). Classical 6 j-symbols and the tetrahedron. Geom. Topol. 3: 21–66 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rotenberg M., Bivins R., Metropolis N. and Wooten J.K. (1959). The 3-j and 6-j symbols. Crosby Lockwood and Son Ltd, London

    Google Scholar 

  21. Taylor Y. and Woodward C. (2005). 6 j symbols for U q (sl 2) and non-Euclidean tetrahedra. Selecta Math. 11: 539–571

    Article  MATH  MathSciNet  Google Scholar 

  22. Toledano Laredo V. (2002). A Kohno-Drinfeld theorem for quantum Weyl groups. Duke Math. J. 112(3): 421–451

    Article  MATH  MathSciNet  Google Scholar 

  23. Wigner, E.P.: On the matrices which reduce the Kronecker products of representations of S.R. groups. (1940). Published in: Quantum theory of angular momentum L.C. Biedenharn, ed., New York: Acad. Press, 1965

  24. Wilson J.A. (1980). Some hypergeometric orthgonal polynomials. SIAM J. Math. Anal. 11(4): 690–701

    Article  MATH  MathSciNet  Google Scholar 

  25. Želobenko, D.P.: Compact Lie groups and their representations. A.M.S. Trans. Math. Monog. Vol. 40, Providence, RI: Amer. Math. Soc, 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip P. Boalch.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boalch, P.P. Regge and Okamoto Symmetries. Commun. Math. Phys. 276, 117–130 (2007). https://doi.org/10.1007/s00220-007-0328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0328-x

Keywords

Navigation