Skip to main content

Advertisement

Log in

Restricting Positive Energy Representations of Diff+(S 1) to the Stabilizer of n Points

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let G n ⊂ Diff+(S 1) be the stabilizer of n given points of S 1. How much information do we lose if we restrict a positive energy representation \(U^c_h\) associated to an admissible pair (c, h) of the central charge and lowest energy, to the subgroup G n ? The question, and a part of the answer originate in chiral conformal QFT. The value of c can be easily “recovered” from such a restriction; the hard question concerns the value of h. If c ≤ 1, then there is no loss of information, and accordingly, all of these restrictions are irreducible. In this work it is shown that \(U^c_{h}|_{G_n}\) is always irreducible for n =  1 and, if h =  0, it is irreducible at least up to n ≤  3. Moreover, an example is given for c >  2 and certain values of \(h \neq \tilde{h}\) such that \(U^c_{h}|_{G_1}\simeq U^c_{\tilde{h}}|_{G_1}\) . It is also concluded that for these values \(U^c_{h}|_{G_n}\) cannot be irreducible for n ≥  2. For further values of c, h and n, the question is left open. Nevertheless, the example already shows that, on the circle, there are conformal QFT models in which local and global intertwiners are not equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Antoni C., Fredenhagen K. and Köster S. (2004). Implementation of Conformal Covariance by Diffeomorphism Symmetry. Lett. Math. Phys. 67: 239–247

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Brunetti R., Guido D. and Longo R. (1993). Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156: 201–219

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Buchholz D. and Schulz-Mirbach H. (1990). Haag duality in conformal quantum field theory. Rev. Math. Phys. 2: 105–125

    Article  MATH  MathSciNet  Google Scholar 

  4. Carpi S. (2004). On the representation theory of Virasoro nets. Commun. Math. Phys. 244: 261–284

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Fredenhagen, K.: Generalization of the theory of superselection sectors. In: The algebraic theory of superselection sectors, edited by D. Kastler, Singapore: World Scientific, 1990

  6. Gabbiani F. and Fröhlich J. (1993). Operator algebras and conformal field theory. Commun. Math. Phys. 155: 569–640

    Article  MATH  ADS  Google Scholar 

  7. Goodman R. and Wallach N.R. (1985). Projective unitary positive-energy representations of Diff(S 1). J. Funct. Anal. 63: 299–321

    Article  MATH  MathSciNet  Google Scholar 

  8. Guido D. and Longo R. (1992). Relativistic Invariance and Charge Conjugation in Quantum Field Theory. Comm. Math. Phys. 148: 521–551

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Guido D., Longo R. and Wiesbrock H.-W. (1998). Extensions of conformal nets and superselection structures. Comm. Math. Phys. 192: 217–244

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. Advanced Series in Mathematical Physics, 2. Singapore: World Scientific Publishing Co., 1987

  11. Kawahigashi Y. and Longo R. (2004). Classification of local conformal nets. Case c <  1. Ann. of Math. 160: 493–522

    Article  MATH  MathSciNet  Google Scholar 

  12. Longo R. and Xu F. (2004). Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251: 321–364

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Nelson E. (1972). Time-ordered operator product of sharp-time quadratic forms. J. Funct. Anal. 11: 211–219

    Article  MATH  Google Scholar 

  14. Xu F. (2005). Strong additivity and conformal nets. Pacific J. Math. 221(1): 167–199

    Article  MATH  MathSciNet  Google Scholar 

  15. Weiner, M.: Conformal covariance and related properties of chiral QFT. Phd Thesis (2005), Dipartimento di Matematica, Università di Roma “Tor Vergata”. http://arxiv.org/list/math/0703336, 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Weiner.

Additional information

Communicated by Y. Kawahigashi

Supported by MIUR, GNAMPA-INdAM, EU networks “Noncommutative Geometry” (MRTN-CT-2006-031962) and “Quantum Spaces – Noncommutative Geometry” (HPRN-CT-2002-00280), and by the “Deutsche Forschungsgemeinschaft”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, M. Restricting Positive Energy Representations of Diff+(S 1) to the Stabilizer of n Points. Commun. Math. Phys. 277, 555–571 (2008). https://doi.org/10.1007/s00220-007-0324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0324-1

Keywords

Navigation