Skip to main content
Log in

Navier-Stokes Equation and Diffusions on the Group of Homeomorphisms of the Torus

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A stochastic variational principle for the (two dimensional) Navier-Stokes equation is established. The velocity field can be considered as a generalized velocity of a diffusion process with values on the volume preserving diffeomorphism group of the underlying manifold. Navier-Stokes equation is reinterpreted as a perturbed equation of geodesics for the L 2 norm. The method described here should hold as well in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold V.I. (1966). Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hidrodynamique des fluides parfaits. Ann. Inst. Fourier 16: 316–361

    Google Scholar 

  2. Arnold V.I. and Khesin B.A. (1998). Topological Methods in Hydrodynamics. Springer-Verlag, New York

    MATH  Google Scholar 

  3. Constantin P. (2001). An Eulerian-Lagrangian approach to the Navier-Stokes equations. Commun. Math. Phys. 216(3): 663–686

    Article  MATH  ADS  Google Scholar 

  4. Constantin, P., Iyer, G.: A Stochastic Lagrangian Representation of 3-Dimensional Incompressible Navier-Stokes Equations. Comm. Pure Appl. Math., in press, DOI 10.1002/cpa.20192, 2007

  5. Fang S. (2002). Canonical Brownian motion on the diffeomorphism group of the circle. J. Funct. Anal. 196: 162–179

    Article  MATH  Google Scholar 

  6. Fang S. (2004). Solving s.d.e.’s on Homeo S1. J. Funct. Anal. 216: 22–46

    Article  MATH  Google Scholar 

  7. Gawedzki, K.: Simple models of turbulent transport. XIV Intern. Congress on Mathem. Physics, RiverEdge, NJ: World Scientific, 2005

  8. Gomes D.A. (2005). A variational formulation for the Navier-Stokes equation. Commun. Math. Phys. 257(1): 227–234

    Article  MATH  ADS  Google Scholar 

  9. Inoue A. and Funaki T. (1979). A new derivation of the Navier-Stokes equation. Commun. Math. Phys. 65: 83–90

    Article  MATH  ADS  Google Scholar 

  10. Kunita H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Malliavin, P.: The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Paris, t. 329, Série I, 325–329 (1999)

  12. Nakagomi T., Yasue K. and Zambrini J.C. (1981). Stochastic variational derivations of the Navier-Stokes equation. Lett. Math. Phys. 160: 337–365

    Google Scholar 

  13. Shkoller S. (1998). Geometry and curvature of diffeomorphism group with H1 metric and mean hydrodynamics. J. Funct. Anal. 160(1): 337–365

    Article  MATH  Google Scholar 

  14. Üstünel, A.S.: Stochastic analysis on Lie groups. Stoch. Anal. and Rel. Topics VI, Progr. Probab. 42, Boston: Birkhäuser 1998

  15. Yasue K. (1983). A variational principle for the Navier-Stokes equation. J. Funct. Anal. 51(2): 133–141

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Cruzeiro.

Additional information

Communicated by P. Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipriano, F., Cruzeiro, A.B. Navier-Stokes Equation and Diffusions on the Group of Homeomorphisms of the Torus. Commun. Math. Phys. 275, 255–269 (2007). https://doi.org/10.1007/s00220-007-0306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0306-3

Keywords

Navigation