Skip to main content
Log in

A KAM Theorem with Applications to Partial Differential Equations of Higher Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 21 June 2011

Abstract

The existence of lower dimensional KAM tori is shown for a class of nearly integrable Hamiltonian systems of infinite dimensions where the second Melnikov’s conditions are completely eliminated and the algebraic structure of the normal frequencies are not needed. As a consequence, it is proved that there exist many invariant tori and thus quasi-periodic solutions for nonlinear wave equations, Schrödinger equations and other equations of any spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi D. (2003). Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234: 253–285

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bambusi D. and Grébert B. (2006). Birkhoff normal form for PDEs with Tame modulus. Duke Math. J. 135(3): 507–567

    Article  MATH  MathSciNet  Google Scholar 

  3. Bambusi D. and Paleari S. (2001). Families of periodic orbits for resonant PDE’s. J. Nonlinear Science 11: 69–87

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Baldi, P.:Quasi-periodic solutions of the equation u tt  − u xx  + u 3 = f(u). Preprint, 2005

  5. Berti M. and Bambusi D. (2005). A Birkhoff- Lewis type theorem for some Hamiltonian PDEs. SIAMJ. Math. Anal. 37(1): 83–102

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti M. and Bolle P. (2006). Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134(2): 359–419

    Article  MATH  MathSciNet  Google Scholar 

  7. Bobenko A.I. and Kuksin S. (1995). The nonlinear klein-Gordon equation on an interval as perturbedsine-Gordon equation. Commun. Math. Helv. 70: 63–112

    Article  MATH  MathSciNet  Google Scholar 

  8. Bricmont J., Kupiainen A. and Schenkel A. (2001). Renormalization group and the Melnikov Problems for PDE’s. Commun. Math. Phys., 221: 101–140

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bogolyubov, N.N., Mitropolskij, Yu. A., Samojlenko, A.M.: Methods of Accelerated Convergence in Nonlinear Mechanics. New York: Springer-Verlag, 1976 [Russian Original: Kiev: Naukova Dumka, 1969]

  10. Bourgain J. (1994). Construction of quasi-periodic solutions for Hamiltonian perturbations of linearequations and application to nonlinear pde. Int. Math. Research Notices 11: 475–497

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J.: Periodic solutions of nonlinear wave equations, Harmonic analysis and partial equations. Chicago IL: Chicago Univ. Press, 1999, pp. 69–97 (1999)

  12. Bourgain J. (1998). Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation. Ann. Math. 148: 363–439

    Article  MATH  MathSciNet  Google Scholar 

  13. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, 158.,Princeton, NJ: Princeton University Press, 2005

  14. Bourgain J. (1997). On Melnikov’s persistence problem. Math. Res. Lett. 4: 445–458

    MATH  MathSciNet  Google Scholar 

  15. Brézis H. (1983). Periodic solutions of nonlinear vibrating strings and duality principles. Bull. AMS 8: 409–426

    MATH  Google Scholar 

  16. Craig W. and Wayne C. (1993). Newton’s method and periodic solutions of nonlinear wave equation. Commun. Pure. Appl. Math. 46: 1409–1501

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen W., Yuan, X., Quasi-periodic solutions of nonlinear wave equation of degeneracy. Preprint

  18. Chierchia L. and You J. (2000). KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211: 497–525

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Eliasson L.H. (1998). of stable invariant tori for Hamiltonian systems. Ann Perturbations Scula Norm. Sup. Pisa CL Sci. 15: 115–147

    MathSciNet  Google Scholar 

  20. Eliasson, L.H., Kuksin, S.B.: KAM for non-linear Schroedinger equation. Preprint, 2006

  21. Frohlich J. and Spencer T. (1983). Absence of diffusion in the Anderson tight binding model for large disorder or lower energy. Commun. Math. Phys 88: 151–184

    Article  ADS  MathSciNet  Google Scholar 

  22. Geng J. and You J. (2006). A KAM theorem for Hamiltonian partial differential equations in higher dimensional paces. Commun. Math. Phys 262: 343–372

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Gentile G., Mastropietro V. and Procesi M. (2005). Periodic solutions for completely resonant nonlinear wave equations. Commun. Math. Phys., 256: 437–490

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Kato, T.: Perturbation Theory for Linear Operators. (Corrected printing of the second edition) Berlin Heidelberg New York: Springer-Verlag, 1980

  25. Kuksin, S.B.: Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes in Math. 1556. New York: Springer-Verlag, 1993

  26. Kuksin, S.B.: Elements of a qualitative theory of Hamiltonian PDEs. Doc. Math. J. DMV (Extra Volume ICM) II,819–829 (1998)

  27. Kuksin S.B. (1987). Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21: 192–205

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuksin S.B. and Pöschel J. (1996). Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143: 149–179

    Article  MATH  Google Scholar 

  29. Lidskij B.V. and Shulman E. (1988). Periodic solutions of the equation u tt  − u xx  + u 3 = 0. Funct. Anal. Appl. 22: 332–333

    Article  MATH  MathSciNet  Google Scholar 

  30. Pöschel J. (1996). A KAM-theorem for some nonlinear PDEs. Ann. Scuola Norm. Sup. Pisa, Cl. Sci.,  IV Ser. 15(23): 119–148

    Google Scholar 

  31. Pöschel J. (1996). Quasi-periodic solutions for nonlinear wave equation. Commun. Math. Helv. 71: 269–296

    Article  MATH  Google Scholar 

  32. Procesi, M.: Quasi-periodic solutions for completely resonant nonlinear wave equations in 1D and 2D, Discr. and Cont. Dyn. Syst. 13, 541–552 (2005)

    Google Scholar 

  33. Wayne C.E. (1990). Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127: 479–528

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Yosida, K.: Functional Analysis. Berlin Heidelberg New York: Springer-Verlag (1980); reprinted in China by Beijing World Publishing corporation, 1999

  35. Yuan X. (2003). Invariant Manifold of Hyperbolic-Elliptic Type for Nonlinear Wave Equation. Int. J. Math. Math. Science 18: 1111–1136

    Article  Google Scholar 

  36. Yuan X. (2006). Invariant tori of nonlinear wave equations with a given potential. Discrete and continuous dynamical systems 16(3): 615–634

    Article  MATH  MathSciNet  Google Scholar 

  37. Yuan X. (2006). Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Diff. Eq. 230: 213–274

    Article  MATH  Google Scholar 

  38. Yuan X. (2003). Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension. J. Diff. Eq. 195: 230–242

    Article  MATH  Google Scholar 

  39. Yuan, X.: A variant of KAM theorem with applications to nonlinear wave equations of higher dimension. Preprint. FDIM 2005-2., see also http://www.ma.utexas.edu/mparc, no.06-44

  40. Ziemer, W.P.: Weakly differentiable functions. Graduate Texts in Math., no. 120, Berlin-Heidelberg-New York: Springer Verlag, 1989, reprinted in China by Beijing World Publishing corporation 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Yuan.

Additional information

Communicated by G. Gallavotti.

Supported by NNSFC and NCET-04-0365 and STCSM-06ZR14014.

An erratum to this article is available at http://dx.doi.org/10.1007/s00220-011-1283-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X. A KAM Theorem with Applications to Partial Differential Equations of Higher Dimensions. Commun. Math. Phys. 275, 97–137 (2007). https://doi.org/10.1007/s00220-007-0287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0287-2

Keywords

Navigation