Skip to main content
Log in

Classification of Minimal Actions of a Compact Kac Algebra with Amenable Dual

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show the uniqueness of minimal actions of a compact Kac algebra with amenable dual on the AFD factor of type II1. This particularly implies the uniqueness of minimal actions of a compact group. Our main tools are a Rohlin type theorem, the 2-cohomology vanishing theorem, and the Evans-Kishimoto type intertwining argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj S. and Skandalis G. (1993). Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4): 425–488

    MathSciNet  Google Scholar 

  2. Connes A. (1975). Outer conjugacy classes of automorphisms of factors. Ann. Sci. École Norm. Sup. (4) 8(3): 383–419

    MATH  MathSciNet  Google Scholar 

  3. Connes A. (1976). Classification of injective factors, Cases II 1, II , III λ, λ ≠  1. Ann. of Math. (2) 104(1): 73–115

    Article  MathSciNet  Google Scholar 

  4. Connes A. (1977). Periodic automorphisms of the hyperfinite factor of type II1. Acta Sci. Math. (Szeged) 39(1–2): 39–66

    MATH  MathSciNet  Google Scholar 

  5. Enock, M., Schwartz, J.-M.: Kac algebras and duality of locally compact groups. Berlin: Springer-Verlag (1992)

  6. Evans D.E. and Kishimoto A. (1997). Trace scaling automorphisms of certain stable AF algebras. Hokkaido Math. J. 26(1): 211–224

    MATH  MathSciNet  Google Scholar 

  7. Hayashi T. and Yamagami S. (2000). Amenable tensor categories and their realizations as AFD bimodules. J. Funct. Anal. 172(1): 19–75

    Article  MATH  MathSciNet  Google Scholar 

  8. Izumi M. (2003). Canonical extension of endomorphisms of type III factors. Amer. J. Math. 125(1): 1–56

    Article  MATH  MathSciNet  Google Scholar 

  9. Izumi M. (2004). Finite group actions on C *-algebras with the Rohlin property I. Duke Math. J. 122(2): 233–280

    Article  MATH  MathSciNet  Google Scholar 

  10. Izumi M., Longo R. and Popa S. (1998). A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155(1): 25–63

    Article  MATH  MathSciNet  Google Scholar 

  11. Jones, V.F.R.: Actions of finite groups on the hyperfinite type II 1 factor. Mem. Amer. Math. Soc. 28(237) (1980)

  12. Jones V.F.R. and Takesaki M. (1984). Actions of compact abelian groups on semifinite injective factors. Acta Math. 153(3–4): 213–258

    Article  MATH  MathSciNet  Google Scholar 

  13. Kawahigashi Y., Sutherland C.E. and Takesaki M. (1992). The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions. Acta Math. 169(1–2): 105–130

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawahigashi Y. and Takesaki M. (1992). Compact abelian group actions on injective factors. J. Funct. Anal. 105(1): 112–128

    Article  MATH  MathSciNet  Google Scholar 

  15. Masuda, T.: Evans-Kishimoto type argument for actions of discrete amenable groups on McDuff factors. To appear in Math. Scand., ArXiv: math.OA/0505311 (2005)

  16. Masuda, T.: Classification of actions of duals of finite groups. http//arxiv.org/list/math.OA/ 0601601 (2006)

  17. Nakagami, Y., Takesaki, M.: Duality for crossed products of von Neumann algebras. Lecture Notes in Mathematics, 731, Berlin: Springer, 1979

  18. Nakamura H. (2000). Aperiodic automorphisms of nuclear purely infinite simple C *-algebras. Ergodic Theory Dynam. Systems 20(6): 1749–1765

    Article  MATH  MathSciNet  Google Scholar 

  19. Ocneanu, A.: Actions of discrete amenable groups on von Neumann algebras. Lecture Notes in Mathematics 1138, Berlin: Springer-Verlag, (1985)

  20. Ocneanu, A.: Prime actions of compact groups on von Neumann algebras. Unpublished

  21. Olsen D., Pedersen G. and Takesaki M. (1980). Ergodic actions of compact abelian groups. J. Operator Theory 3(2): 237–269

    MathSciNet  Google Scholar 

  22. Ornstein D. and Weiss B. (1980). Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Amer. Math. Soc. (N.S.) 2(1): 161–164

    Article  MATH  MathSciNet  Google Scholar 

  23. Ornstein D. and Weiss B. (1987). Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48: 1–141

    Article  MATH  MathSciNet  Google Scholar 

  24. Popa S. (1994). Classification of amenable subfactors of type II. Acta Math. 172(2): 163–255

    Article  MATH  MathSciNet  Google Scholar 

  25. Popa S.: Classification of subfactors and their endomorphisms. CBMS Regional Conference Series in Mathematics 86, Published for the Conference Board of the Mathematical Sciences,Washington, DC; Providence, RI: Amer. Math. Soc., 1995

  26. Popa S. and Wassermann A. (1992). Actions of compact Lie groups on von Neumann algebras (English. English, French summary). Acad, C.R. Sci. Paris Sér. I Math. 315(4): 421–426

    MATH  MathSciNet  Google Scholar 

  27. Powers R.T. and Størmer E. (1970). Free states of the canonical anticommutation relations. Commun. Math. Phys. 16: 1–33

    Article  MATH  ADS  Google Scholar 

  28. Roberts J.E. (1976). Cross products of von Neumann algebras by group dual. Symp. Math. XX: 335(-363): 335–363

    Google Scholar 

  29. Ruan Z.-J. (1996). Amenability of Hopf von Neumann algebras and Kac algebras. J. Funct. Anal. 139(2): 466–499

    Article  MATH  MathSciNet  Google Scholar 

  30. Sekine Y. (1998). An analogue of Paschke’s theorem for actions of compact Kac algebras. KyushuJ. Math. 52(2): 353–359

    Article  MATH  MathSciNet  Google Scholar 

  31. Sutherland C.E. and Takesaki M. (1989). Actions of discrete amenable groups on injective factors of type IIIλ, λ≠1. Pacific J. Math. 137(2): 405–444

    MATH  MathSciNet  Google Scholar 

  32. Takesaki M. (1973). Duality for crossed products and the structure of von Neumann algebras of type III. Acta. Math. 131: 249–310

    Article  MATH  MathSciNet  Google Scholar 

  33. Vaes S. (2005). Strictly outer actions of groups and quantum groups. J. Reine Angew. Math. 578: 147–184

    MATH  MathSciNet  Google Scholar 

  34. Wassermann, A.: Coactions and Yang-Baxter equations for ergodic actions and subfactors. Operator algebras and applications. Vol. 2, London Math. Soc. Lecture Note Ser. 136, Cambridge: Cambridge Univ. Press, 1988, pp. 203–236

  35. Wassermann A. (1989). Ergodic actions of compact groups on operator algebras. I. General theory. Ann. of Math. 2(130(2)): 273–319

    Article  MathSciNet  Google Scholar 

  36. Wassermann A. (1988). Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions. Canad. J. Math. 40(6): 1482–1527

    MathSciNet  Google Scholar 

  37. Wassermann A. (1988). Ergodic actions of compact groups on operator algebras.iiiClassification for su(2). Invent. Math. 93(2): 309–354

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Yamanouchi T. (1999). The Connes spectrum for actions of compact Kac algebras and factoriality of their crossed products. Hokkaido Math. J. 28(2): 409–434

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Masuda.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, T., Tomatsu, R. Classification of Minimal Actions of a Compact Kac Algebra with Amenable Dual. Commun. Math. Phys. 274, 487–551 (2007). https://doi.org/10.1007/s00220-007-0269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0269-4

Keywords

Navigation