Skip to main content
Log in

A Characterization of Right Coideals of Quotient Type and its Application to Classification of Poisson Boundaries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({\mathbb{G}}\) be a co-amenable compact quantum group. We show that a right coideal of \({\mathbb{G}}\) is of quotient type if and only if it is the range of a conditional expectation preserving the Haar state and is globally invariant under the left action of the dual discrete quantum group. We apply this result to the theory of Poisson boundaries introduced by Izumi for discrete quantum groups and generalize a work of Izumi-Neshveyev-Tuset on SU q (N) for co-amenable compact quantum groups with the commutative fusion rules. More precisely, we prove that the Poisson integral is an isomorphism between the Poisson boundary and the right coideal of quotient type by a maximal quantum subgroup of Kac type. In particular, the Poisson boundary and the quantum flag manifold are isomorphic for any q-deformed classical compact Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj S., Skandalis G. (1993). Unitaires multiplicatifs et dualité pour les produits croisé de C *-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4): 425–488

    Google Scholar 

  2. Bédos E., Conti R., Tuset L. (2005). On amenability and co-amenability of algebraic quantum groups and their corepresentations. Canad. J. Math. 57(1): 17–60

    MATH  Google Scholar 

  3. Bédos E., Murphy G., Tuset L. (2001). Co-amenability of compact quantum groups. J. Geom. Phys. 40(2): 130–153

    Article  MATH  Google Scholar 

  4. Bédos E., Murphy G., Tuset L. (2002). Amenability and coamenability of algebraic quantum groups. Int. J. Math. Math. Sci. 31(10): 577–601

    Article  MATH  Google Scholar 

  5. Connes A. (1980). On the spatial theory of von Neumann algebras. J. Funct. Anal. 35(2): 153–164

    Article  MATH  Google Scholar 

  6. Effros E., Ruan Z.-J. (1994). Discrete quantum groups. I. The Haar measure. Internat. J. Math. 5(5): 681–723

    Article  MATH  Google Scholar 

  7. Enock, M., Schwartz, J. M.: Kac algebras and duality of locally compact groups. Berlin: Springer-Verlag, 1992, pp. x+257

  8. Haagerup U. (1979). Operator-valued weights in von Neumann algebras. I. J. Funct. Anal. 32(2): 175–206

    Article  MATH  Google Scholar 

  9. Haagerup U. (1979). Operator-valued weights in von Neumann algebras. II. J. Funct. Anal. 33(3): 339–361

    Article  MATH  Google Scholar 

  10. Izumi M. (2002). Non-commutative Poisson boundaries and compact quantum group actions. Adv. Math. 169(1): 1–57

    Article  MATH  Google Scholar 

  11. Izumi M., Longo R., Popa S. (1998). A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155(1): 25–63

    Article  MATH  Google Scholar 

  12. Izumi M., Neshveyev S., Tuset L. (2006). Poisson boundary of the dual of SU q (n). Commun. Math. Phys. 262(2): 505–531

    Article  MATH  ADS  Google Scholar 

  13. Kosaki H. (1986). Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66(1): 123–140

    Article  MATH  Google Scholar 

  14. Kosaki, H.: Type III factors and index theory. Lecture Notes Series 43, Seoul: Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1998, pp. ii+96

  15. Korogodski, L.I., Soibelman, Y.S.: Algebras of functions on quantum groups. Part I. Mathematical Surveys and Monographs 56, Providence, RI: Amer. Math. Soc. 1998, pp. x+150

  16. Kustermans J., Vaes S. (2003). Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(1): 68–92

    MATH  Google Scholar 

  17. Neshveyev S., Tuset L. (2004). The Martin boundary of a discrete quantum group. J. Reine Angew. Math. 568: 23–70

    MATH  Google Scholar 

  18. Podleś P. (1987). Quantum spheres. Lett. Math. Phys. 14(3): 193–202

    Article  Google Scholar 

  19. Podleś P. (1995). Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Commun. Math. Phys. 170(1): 1–20

    Article  ADS  Google Scholar 

  20. Sołtan P.M. (2005). Quantum Bohr compactification. Illinois J. Math. 49(4): 1245–1270

    Google Scholar 

  21. Takesaki M. (1972). Conditional expectations in von Neumann algebras. J. Funct. Anal. 9: 306–321

    Article  MATH  Google Scholar 

  22. Tomatsu R. (2006). Amenable discrete quantum groups. J. Math. Soc. Japan 58(4): 949–964

    MATH  Google Scholar 

  23. Tomatsu, R.: Compact quantum ergodic systems. http://arxiv.org/list/math.OA/0412012, 2004

  24. Vaes S. (2001). The unitary implementation of a locally compact quantum group action. J. Funct. Anal. 180(2): 426–480

    Article  MATH  Google Scholar 

  25. Vaes, S., Vander Vennet, N.: Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups. http://arxiv.org/list/math.OA/0605489, 2006

  26. Vaes, S., Vergnioux, R.: The boundary of universal discrete quantum groups, exactness and factoriality. http://arxiv.org/list/math.OA/0509706, 2005

  27. Van Daele A. (1996). Discrete quantum groups. J. Algebra 180(2): 431–444

    Article  MATH  Google Scholar 

  28. Woronowicz S.L. (1987). Compact matrix pseudogroups. Commun. Math. Phys. 111(4): 613–665

    Article  MATH  ADS  Google Scholar 

  29. Woronowicz S.L. (1988). Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU(N) groups. Invent. Math. 93(1): 35–76

    Article  MATH  ADS  Google Scholar 

  30. Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), Amsterdam: North-Holland, 1998, pp. 845–884

  31. Yamagami S. (1995). On unitary representation theories of compact quantum groups. Commun. Math. Phys. 167(3): 509–529

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiji Tomatsu.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomatsu, R. A Characterization of Right Coideals of Quotient Type and its Application to Classification of Poisson Boundaries. Commun. Math. Phys. 275, 271–296 (2007). https://doi.org/10.1007/s00220-007-0267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0267-6

Keywords

Navigation