Skip to main content
Log in

Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider unitary random matrix ensembles \(Z_{n,s,t}^{-1}e^{-n tr V_{s,t}(M)}dM\) on the space of Hermitian n × n matrices M, where the confining potential V s,t is such that the limiting mean density of eigenvalues (as n→∞ and s,t→ 0) vanishes like a power 5/2 at a (singular) endpoint of its support. The main purpose of this paper is to prove universality of the eigenvalue correlation kernel in a double scaling limit. The limiting kernel is built out of functions associated with a special solution of the P 2 I equation, which is a fourth order analogue of the Painlevé I equation. In order to prove our result, we use the well-known connection between the eigenvalue correlation kernel and the Riemann-Hilbert (RH) problem for orthogonal polynomials, together with the Deift/Zhou steepest descent method to analyze the RH problem asymptotically. The key step in the asymptotic analysis will be the construction of a parametrix near the singular endpoint, for which we use the model RH problem for the special solution of the P 2 I equation.

In addition, the RH method allows us to determine the asymptotics (in a double scaling limit) of the recurrence coefficients of the orthogonal polynomials with respect to the varying weights \(e^{-nV_{s,t}}\) on \({\mathbb{R}}\) . The special solution of the P 2 I equation pops up in the n −2/7-term of the asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleher P. and Its A. (1999). Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem and universality in the matrix model. Ann. Math. 150: 185–266

    Article  MATH  MathSciNet  Google Scholar 

  2. Bleher P. and Its A. (2003). Double scaling limit in the random matrix model: the Riemann-Hilbert approach. Comm. Pure Appl. Math. 56: 433–516

    Article  MATH  MathSciNet  Google Scholar 

  3. Bowick M.J. and Brézin E. (1991). Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. Lett. B 268(1): 21–28

    Article  ADS  MathSciNet  Google Scholar 

  4. Brézin E., Marinari E. and Parisi G. (1990). A non-perturbative ambiguity free solution of a string model. Phys. Lett. B 242(1): 35–38

    Article  ADS  MathSciNet  Google Scholar 

  5. Claeys T. and Kuijlaars A.B.J. (2006). Universality of the double scaling limit in random matrix models. Comm. Pure Appl. Math. 59: 1573–1603

    Article  MATH  MathSciNet  Google Scholar 

  6. Claeys, T., Kuijlaars, A.B.J., Vanlessen, M.: Multi- critical unitary random matrix ensembles and the general Painlevé II equation. http://arxiv.org/list/math-ph/0508062, to appear in Ann. Math.

  7. Claeys T. and Vanlessen M. (2007). The existence of a real pole- free solution of the fourth order analogue of the Painlevé I equation. Nonlinearity 20: 1163–1184

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann- Hilbert Approach. Courant Lecture Notes 3, New York: New York University, 1999

  9. Deift P., Kriecherbauer T. and McLaughlin K.T-R. (1998). New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95: 388–475

    Article  MATH  MathSciNet  Google Scholar 

  10. Deift P., Kriecherbauer T., McLaughlin K.T-R., Venakides S. and Zhou X. (1999). Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52: 1335–1425

    Article  MATH  MathSciNet  Google Scholar 

  11. Deift P., Kriecherbauer T., McLaughlin K.T-R., Venakides S. and Zhou X. (1999). Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52: 1491–1552

    Article  MATH  MathSciNet  Google Scholar 

  12. Deift, P., McLaughlin, K.T-R.: A continuum limit of the Toda lattice. Vol. 131, Memoirs of the Amer. Math. Soc. 624, Providence, RI: Amer. Math. Soc., 1998

  13. Deift P. and Zhou X. (1993). A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137: 295–368

    Article  MathSciNet  Google Scholar 

  14. Dubrovin B., Liu S.-Q. and Zhang Y. (2006). On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations. Comm. Pure Appl. Math. 59(4): 559–615

    Article  MATH  MathSciNet  Google Scholar 

  15. Dubrovin B. (2006). On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour. Commun. Math. Phys. 267: 117–139

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Duits M. and Kuijlaars A.B.J. (2006). Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight. Nonlinearity 19: 2211–2245

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Fokas A.S., Its A.R. and Kitaev A.V. (1992). The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147: 395–430

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Hastings S.P. and McLeod J.B. (1980). A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rat. Mech. Anal. 73: 31–51

    Article  MATH  MathSciNet  Google Scholar 

  19. Kapaev A.A. (1995). Weakly nonlinear solutions of equation P 2 I . J. Math. Sc. 73(4): 468–481

    Article  MathSciNet  Google Scholar 

  20. Kawai T., Koike T., Nishikawa Y. and Takei Y. (2004). On the Stokes geometry of higher order Painlevé equations. Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. II. Astérisque 297: 117–166

    MathSciNet  Google Scholar 

  21. Kuijlaars A.B.J. and McLaughlin K.T-R. (2000). Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Comm. Pure Appl. Math. 53: 736–785

    Article  MATH  MathSciNet  Google Scholar 

  22. Kuijlaars A.B.J., McLaughlin K.T-R., Vanlessen M. and Assche W. (2004). The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials. Adv. Math. 188(2): 337–398

    Article  MATH  MathSciNet  Google Scholar 

  23. Kudryashov N.A. and Soukharev M.B. (1998). Uniformization and transcendence of solutions for the first and second Painlevé hierarchies, Phys. Lett. A 237(4–5): 206–216

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Kuijlaars A.B.J. and Vanlessen M. (2003). Universality for eigenvalue correlations at the origin of the spectrum. Commun. Math. Phys. 243: 163–191

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Mehta M.L. (1991). Random Matrices. Academic Press, Boston

    MATH  Google Scholar 

  26. Moore G. (1990). Geometry of the string equations. Commun. Math. Phys. 133(2): 261–304

    Article  MATH  ADS  Google Scholar 

  27. Pastur L. and Shcherbina M. (1997). Universality of the local eigennvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys. 86(1–2): 109–147

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Saff E.B. and Totik V. (1997). Logarithmic Potentials with External Fields. Springer-Verlag, New York

    MATH  Google Scholar 

  29. Shcherbina, M.: Double scaling limit for matrix models with non analytic potentials. http:// arxiv./org/list/cond-math/0511161, 2005

  30. Szegõ, G.: “Orthogonal polynomials”. 3rd ed., Providence, RI: Amer. Math. Soc. 1974

  31. Vanlessen M. (2003). Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight. J. Approx. Theory 125: 198–237

    Article  MATH  MathSciNet  Google Scholar 

  32. Vanlessen, M.: Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory. http://arxiv.org/list/math.CA/0504604, 2005, to appear in Constr. Approx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Claeys.

Additional information

Communicated by B. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claeys, T., Vanlessen, M. Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models. Commun. Math. Phys. 273, 499–532 (2007). https://doi.org/10.1007/s00220-007-0256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0256-9

Keywords

Navigation