Skip to main content
Log in

Spectral Analysis and Zeta Determinant on the Deformed Spheres

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a class of singular Riemannian manifolds, the deformed spheres \({S^{N}_{k}}\) , defined as the classical spheres with a one parameter family g[k] of singular Riemannian structures, that reduces for k = 1 to the classical metric. After giving explicit formulas for the eigenvalues and eigenfunctions of the metric Laplacian \({\Delta_{{S^{N}_{k}}}}\) , we study the associated zeta functions \({\zeta(s, \Delta_{{S^{N}_{k}}})}\) . We introduce a general method to deal with some classes of simple and double abstract zeta functions, generalizing the ones appearing in \({\zeta(s,\Delta_{{S^{N}_{k}}})}\) . An application of this method allows to obtain the main zeta invariants for these zeta functions in all dimensions, and in particular \({\zeta(0,\Delta_{{S^{N}_{k}}})}\) and \({\zeta'(0,\Delta_{{S^{N}_{k}}})}\) . We give explicit formulas for the zeta regularized determinant in the low dimensional cases, N = 2,3, thus generalizing a result of Dowker [25], and we compute the first coefficients in the expansion of these determinants in powers of the deformation parameter k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apps J.S. and Dowker J.S. (1998). The C 2 heat-kernel coefficient in the presence of boundary discontinuities. Class. Quant. Grav. 15: 1121–1139

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Atiyah M., Bott R. and Patodi V.K. (1973). On the Heat Equation and the Index Theorem. Invent. Math. 19: 279–330

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Barnes E.W. (1904). The theory of the multiple Gamma function. Trans. Cambridge Phil. Soc. 19: 374–425

    Google Scholar 

  4. Barnes E.W. (1899). The theory of the G function. Quart. J. Math. 31: 264–314

    Google Scholar 

  5. Bordag M., Geyer B., Kirsten K. and Elizalde E. (1996). Zeta function determinant of the Laplace operator on the D-dimensional ball. Commun. Math. Phys. 179: 215–234

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bordag M., Dowker J.S. and Kirsten K. (1996). Heat kernel and functional determinants on the generalized cone. Commun. Math. Phys. 182: 371–394

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brüning J. and Seeley R. (1987). The resolvent expansion for second order regular singular operators. J. Funct. Anal. 73: 369–429

    Article  MATH  MathSciNet  Google Scholar 

  8. Burghelea D., Friedlander L. and Kappeler T. (1995). On the determinant of elleptic boundary value problems on a line segment. Proc. Am. Math. Soc. 123: 3027–3028

    Article  MATH  MathSciNet  Google Scholar 

  9. Bytsenko A.A., Cognola G., Vanzo L. and Zerbini S. (1996). Quantum fields and extended objects on space-times with constant curvature spatial section. Phys. Rept. 266: 1–126

    Article  MathSciNet  Google Scholar 

  10. Bytsenko A.A., Cognola G. and Zerbini S. (1997). Determinant of Laplacian on non-compact 3-dimensional hyperbolic manifold with finite volume. J. Phys. A: Math. Gen. 30: 3543–3552

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Camporesi R. (1990). Harmonic analysis and propagators on homogeneous spaces. Phys. Reports 196: 1–134

    Article  MathSciNet  ADS  Google Scholar 

  12. Carletti E. and Monti Bragadin G. (1994). On Dirichlet series associated with polynomials. Proc. Am. Math. Soc. 121: 33–37

    Article  MATH  MathSciNet  Google Scholar 

  13. Carletti E. and Monti Bragadin G. (1994). On Minakshisundaram-Pleijel zeta functions on spheres. Proc. Am. Math. Soc. 122: 993–1001

    Article  MATH  MathSciNet  Google Scholar 

  14. Cassou-Noguès P. (1979). Valeurs aux intieres négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math. 51: 29–59

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Cassou-Noguès P. (1990). Dirichlet series associated with a polynomial. Number theory and physics, Springer Proc. Phys. 47: 247–252

    Google Scholar 

  16. Chandrasekharan K. (1985). Elliptic functions. Springer GMW 281, Berlin Heidelberg-New York Springer,

    MATH  Google Scholar 

  17. Cheeger J. (1984). Spectral geometry of singular Riemannian spaces. J. Diff. Geom. 18: 575–657

    MathSciNet  Google Scholar 

  18. Choi J. and Quine J.R. (1996). Zeta regularized products and functional determinants on spheres. Rocky Mount. J. Math. 26: 719–729

    Article  MATH  MathSciNet  Google Scholar 

  19. Cognola G., Kirsten K. and Vanzo L. (1984). Free and self-interacting scalar fields in the presence of conical singularities. Phys. Rev. D 49: 1029–1038

    Article  MathSciNet  ADS  Google Scholar 

  20. Cognola G., Vanzo L. and Zerbini S. (1992). Regularization dependence of vacuum energy in arbitrarily shaped cavities. J. Math. Phys. 33: 222–228

    Article  MathSciNet  ADS  Google Scholar 

  21. Cognola G. and Zerbini S. (1997). Zeta determinant on a generalized cone. Lett. Math. Phys. 42: 95–101

    Article  MATH  MathSciNet  Google Scholar 

  22. Critchley R. and Dowker J.S. (1981). Vacuum stress tensor for a slightly squashed Einstein universe. J. Phys. A: Math. Gen. 14: 1943–1955

    Article  MathSciNet  ADS  Google Scholar 

  23. Dowker J.S. (1977). Quantum field theory on a cone. J. Phys. A: Math. Gen. 10: 115–124

    Article  MathSciNet  ADS  Google Scholar 

  24. Dowker J.S.: Vacuum energy in a squashed Einstein universe. In: Quantum theory of gravity. S. M. Christensen, ed. Bristol Adam Hilger (1994)

  25. Dowker J.S. (1994). Effective actions in spherical domains. Commun. Math. Phys. 162: 633–647

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Dowker J.S. (1994). Functional determinants on spheres and sections. J. Math. Phys. 35: 4989–4999

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Dowker J.S. (2001). Magnetic fields and factored two-spheres. J. Math. Phys. 42: 1501–1532

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Eie M. (1989). On the values at negative half integers od Dedekind the zeta function of a real quadratic field. Proc. Am. Math. Soc. 105: 273–280

    Article  MATH  MathSciNet  Google Scholar 

  29. Eie M. (1990). On a Dirichlet series associated with a polynomial, Proc. Am. Math. Soc. 110: 583–590

    Article  MATH  MathSciNet  Google Scholar 

  30. Elizalde E., Odintsov S.D., Romeo A., Bytsenko A.A., Zerbini S.: Zeta regularization techniques with applications. Singapure: Word Scientific, 1994

  31. Elizalde E. (1995). Ten physical applications of spectral zeta functions. Springer-Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  32. Epstein P. (1903). Zur Theorie allgemeiner Zetafunctionen. Math. Ann. 56: 615–645

    Article  MathSciNet  MATH  Google Scholar 

  33. Epstein P. (1907). Zur Theorie allgemeiner Zetafunctionen II. Math. Ann. 63: 205–216

    Article  MATH  Google Scholar 

  34. Fursaev D.V. (1994). The heat-kernel expansion on a cone and quantum fields near cosmic strings. Class. Qauntum Grav. 11: 1431–1443

    Article  MathSciNet  ADS  Google Scholar 

  35. Gradshteyn I.S. and Ryzhik I.M. (1980). Table of integrals, series and products. Londen-New York, Ac. Press

    MATH  Google Scholar 

  36. Gromes D. (1966). Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche. Math. Zeit. 94: 110–121

    Article  MATH  MathSciNet  Google Scholar 

  37. Hawking S.W. (1977). Zeta function regularization of path integrals in curved space time. Commun. Math. Phys. 55: 139–170

    Article  MathSciNet  ADS  Google Scholar 

  38. Higgins J.R. (1977). Completeness and basis properties of sets of special functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Hobson E.W. (1955). The theory of spehrical and ellipsoid harmonics, Cambridge Univ. Press, Cambridge

    Google Scholar 

  40. Hu B.L. (1973). Scalar waves in the Mixmaster universe. I. The Helmholtz equation in a fixed background. Phys. Rev. D 8: 1048–1060

    Article  ADS  Google Scholar 

  41. Jorgenson J. and Lang S. (1993). Complex analytic properties of regularized products. Lect. Notes Math. 1564, Berlin Heidelberg-New York Springer,

    Google Scholar 

  42. Kolmogorov A.N. and Fomin S.V. (1977). Elements de la theorie des functiones et de l’analyse fonctionelle. Moscow, Editions Mir

    Google Scholar 

  43. Kontsevich M. and Vishik S. (1995). Geometry of determinants of elliptic operators. Functional analysis on the eve of the 21st century, Progr. Math. 131: 173–197

    MathSciNet  Google Scholar 

  44. Kurokawa N. (1991). Multiple sine functions and the Selberg zeta function. Proc. Jpn. Acad. A 67: 61–64

    MATH  MathSciNet  Google Scholar 

  45. Lesch M. (1998). Determinants of regular singular Sturm-Liouville operators. Math. Nachr. 194: 139–170

    MATH  MathSciNet  Google Scholar 

  46. Matsumoto K. (1998). Asymptotic series for double zeta, double gamma and Hencke L-functions. Math. Proc. Cambridge Phil. Soc. 123: 385–405

    Article  MATH  ADS  Google Scholar 

  47. Ortenzi G. and Spreafico M. (2004). Zeta function regularization for a scalar field in a compact domain. J. Phys. A: Math. Gen. 37: 11499–11517

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Prasolov V. and Solovyev Y. (1997). Elliptic functions and elliptic integrals. AMS Translations of Monoraphs 170 Providenco, RI: Amer. Math. Soc.

    MATH  Google Scholar 

  49. Ray D.B. and Singer I.M. (1974). R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7: 145–210

    Article  MathSciNet  Google Scholar 

  50. Sarnak P. (1987). Determinants of Laplacians. Commun. Math. Phys. 110: 113–120

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Shitani T. (1976). On evaluations of zeta functions of totally real algebraic number fields at nonpositive integers. J. Fac. Sci. Univ. Tokyo 23: 393–417

    Google Scholar 

  52. Shtykov N. and Vassilevich D.V. (1995). The heat kernel for deformed spheres. J. Phys. A: Math. Gen. 28: 37–43

    Article  MathSciNet  ADS  Google Scholar 

  53. Shuster R. (1992). A generalized Barnes G-function. Z. Analysis Anwend. 11: 229–236

    Google Scholar 

  54. Spreafico M. (2003). Zeta function and regularized determinant on projective spaces. Rocky Mount. J. Maths. 33: 1499–1512

    MATH  MathSciNet  Google Scholar 

  55. Spreafico M. (2004). On the non-homogenous Bessel zeta function. Mathematika 51: 123–130

    Article  MATH  MathSciNet  Google Scholar 

  56. Spreafico M. (2005). Zeta function and regularized determinant on a disc and on a cone. J. Geom. Phys. 54: 355–371

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Spreafico M. (2005). A generalization of the Euler Gamma function. Funct. Anal. Appl. 39: 156–159

    Article  MATH  MathSciNet  Google Scholar 

  58. Spreafico M. (2006). Zeta invariants for Dirichlet series. Pacific J. Math. 224: 100–114

    Article  MathSciNet  Google Scholar 

  59. Spreafico M. (2006). Zeta functions, special functions and the Lerch formula. Proc. Royal Soc. Ed. 136: 865–889

    MathSciNet  Google Scholar 

  60. Vardi I. (1988). Determinants of Laplacians and multiple Gamma functions. SIAM J. Math. Anal. 19: 493–507

    Article  MATH  MathSciNet  Google Scholar 

  61. Voros A. (1987). Spectral functions, special functions and the Selberg zeta function. Comm. Math. Phys. 110: 439–465

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Weidmann J. (1980). Linear operators in Hilbert spaces. GTM 68, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  63. Weil A. (1976). Elliptic functions according to Eisenstein and Kronecker. Springer-Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  64. Whittaker E.T. and Watson G.N. (1946). A course in modern analysis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  65. Wolf J.A. (1967). Spaces of constant curvature. McGraw-Hill, New York

    MATH  Google Scholar 

  66. Zagier D. (1975). A Kronecker limit formula for real quadratic fields. Ann. Math. 213: 153–184

    Article  MATH  MathSciNet  Google Scholar 

  67. Zagier D. (1977). Valeurs des fonctions zeta des corps quadratiques reèls aux entiers negatifs. Astérisque 41-42: 135–151

    MathSciNet  Google Scholar 

  68. Zerbini S., Cognola G. and Vanzo L. (1996). Euclidean approach to the entropy for a scalar field in Rindler-like space-time. Phys. Rev. D 54: 2699–2710

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Spreafico.

Additional information

Communicated by G.W. Gibbons

Partially supported by FAPESP: 2005/04363-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spreafico, M., Zerbini, S. Spectral Analysis and Zeta Determinant on the Deformed Spheres. Commun. Math. Phys. 273, 677–704 (2007). https://doi.org/10.1007/s00220-007-0229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0229-z

Keywords

Navigation