Skip to main content
Log in

A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A key result in the proof of black hole uniqueness in 4-dimensions is that a stationary black hole that is “rotating”—i.e., is such that the stationary Killing field is not everywhere normal to the horizon—must be axisymmetric. The proof of this result in 4-dimensions relies on the fact that the orbits of the stationary Killing field on the horizon have the property that they must return to the same null geodesic generator of the horizon after a certain period, P. This latter property follows, in turn, from the fact that the cross-sections of the horizon are two-dimensional spheres. However, in spacetimes of dimension greater than 4, it is no longer true that the orbits of the stationary Killing field on the horizon must return to the same null geodesic generator. In this paper, we prove that, nevertheless, a higher dimensional stationary black hole that is rotating must be axisymmetric. No assumptions are made concerning the topology of the horizon cross-sections other than that they are compact. However, we assume that the horizon is non-degenerate and, as in the 4-dimensional proof, that the spacetime is analytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunting, G.L.: Proof of the uniqueness conjecture for black holes. Ph.D. Thesis, Univ. of New England, Armidale, N.S.W., 1983

  2. Carter B. (1971). Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26: 331–333

    Article  ADS  Google Scholar 

  3. Charmousis C. and Gregory R. (2004). Axisymmetric metrics in arbitrary dimensions. Class. Quant. Grav. 21: 527

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Chruściel P.T. (1997). On rigidity of analytic black holes. Commun. Math. Phys. 189: 1–7

    Article  ADS  Google Scholar 

  5. Chruściel P.T. and Wald R.M. (1994). Maximal hypersurfaces in asymptotically stationary space-times. Commun. Math. Phys. 163: 561

    Article  ADS  Google Scholar 

  6. Emparan R. and Reall H.S. (2002). Generalized Weyl solutions. Phys. Rev. D 65: 084025

    Article  ADS  MathSciNet  Google Scholar 

  7. Emparan R. and Reall H.S. (2002). A rotating black ring in five dimensions. Phys. Rev. Lett. 88: 101101

    Article  ADS  MathSciNet  Google Scholar 

  8. Friedrich H. (1991). On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom. 34: 275

    MATH  MathSciNet  Google Scholar 

  9. Friedrich H., Racz I. and Wald R.M. (1999). On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204: 691–707

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Galloway G.J., Schleich K., Witt D.M. and Woolgar E. (1999). Topological censorship and higher genus black holes. Phys. Rev. D 60: 104039

    Article  ADS  MathSciNet  Google Scholar 

  11. Galloway G.J., Schleich K., Witt. D. and Woolgar E. (2001). The AdS/CFT correspondence conjecture and topological censorship. Phys. Lett. B 505: 255

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Gibbons G.W., Hartnoll S.A. and Pope C.N. (2003). Bohm and Einstein-Sasaki metrics, black holes and cosmological event horizons. Phys. Rev. D 67: 084024

    Article  ADS  MathSciNet  Google Scholar 

  13. Gibbons G.W., Ida D. and Shiromizu T. (2002). Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions. Phys. Rev. D 66: 044010

    Article  ADS  MathSciNet  Google Scholar 

  14. Gibbons G.W., Ida D. and Shiromizu T. (2002). Uniqueness and non-uniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89: 041101

    Article  ADS  MathSciNet  Google Scholar 

  15. Gibbons G.W., Lu H., Page D.N. and Pope C.N. (2004). Rotating black holes in higher dimensions with a cosmological constant. Phys. Rev. Lett. 93: 171102

    Article  ADS  Google Scholar 

  16. Harmark T. (2004). Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70: 124002

    Article  ADS  MathSciNet  Google Scholar 

  17. Harmark T. and Olesen P. (2005). Structure of stationary and axisymmetric metrics. Phys. Rev. D 72: 124017

    Article  ADS  MathSciNet  Google Scholar 

  18. Hawking S.W. (1972). Black holes in general relativity. Commun. Math. Phys. 25: 152–166

    Article  ADS  MathSciNet  Google Scholar 

  19. Hawking S.W., Ellis G.F.R. (1973). The large scale structure of space-time. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  20. Isenberg J. and Moncrief V. (1985). Symmetries of cosmological Cauchy horizons with exceptonal orbits. J. Math. Phys. 26: 1024–1027

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Isenberg J. and Moncrief V. (1992). On spacetimes containing Killing vector fields with non-closed orbits. Class. Quantum Grav. 9: 1683–1691

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Isenberg, J., Moncrief, V.: Work in progress

  23. Israel W. (1967). Event horizons in static vacuum space-times. Phys. Rev. 164: 1776–1779

    Article  ADS  Google Scholar 

  24. Israel W. (1968). Event horizons in electrovac vacuum space-times. Commun. Math. Phys. 8: 245–260

    Article  ADS  MathSciNet  Google Scholar 

  25. Mazur P.O. (1982). Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 15: 3173–3180

    Article  ADS  MathSciNet  Google Scholar 

  26. Mishima T. and Iguchi H. (2006). New axisymmetric stationary solutions of five-dimensional vacuum Einstein equations with asymptotic flatness. Phys. Rev. D 73: 044030

    Article  ADS  MathSciNet  Google Scholar 

  27. Moncrief V. and Isenberg J. (1983). Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89: 387–413

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Morisawa Y. and Ida D. (2004). A boundary value problem for the five-dimensional stationary rotating black holes. Phys. Rev. D 69: 124005

    Article  ADS  MathSciNet  Google Scholar 

  29. Müller zum Hagen H. (1990). Characteristic initial value problem for hyperbolic systems of second order differential systems. Ann. Inst. Henri Poincaré 53: 159–216

    MATH  Google Scholar 

  30. Myers R.C. and Perry M.J. (1986). Black holes in higher dimensional space-times. Ann. Phys. 172: 304

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Nomizu K. (1960). On local and global existence of Killing vector fields. Ann. Math. 72: 105–120

    Article  MathSciNet  Google Scholar 

  32. Racz I. (2000). On further generalization of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Class. Quant. Grav. 17: 153

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Racz I. and Wald R.M. (1992). Extensions of spacetimes with Killing horizons. Class. Quantum Grav. 9: 2643–2656

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Racz I. and Wald R.M. (1996). Global extensions of spacetimes describing asymptotic final states of black holes. Class. Quantum Grav. 13: 539–552

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Rendall A. (1990). Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations. Proc. Roy. Soc. Lond. A 427: 211–239

    ADS  MathSciNet  Google Scholar 

  36. Robinson D.C. (1975). Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34: 905–906

    Article  ADS  Google Scholar 

  37. Rogatko M. (2002). Uniqueness theorem for static black hole solutions of sigma models in higher dimensions. Class. Quant. Grav. 19: L151

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Rogatko M. (2003). Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions. Phys. Rev. D 67: 084025

    Article  ADS  MathSciNet  Google Scholar 

  39. Rogatko M. (2004). Uniqueness theorem for generalized Maxwell electric and magnetic black holes in higher dimensions. Phys. Rev. D 70: 044023

    Article  ADS  MathSciNet  Google Scholar 

  40. Rogatko M. (2004). Uniqueness theorem for stationary black hole solutions of sigma-models in five dimensions. Phys. Rev. D 70: 084025

    Article  ADS  MathSciNet  Google Scholar 

  41. Rogatko M. (2005). Staticity theorem for higher dimensional generalized Einstein-Maxwell system. Phys. Rev. D 71: 024031

    Article  ADS  MathSciNet  Google Scholar 

  42. Sudarsky D. and Wald R.M. (1992). Extrema of mass, stationarity and staticity, and solutions to the Einstein Yang-Mills equations. Phys. Rev. D 46: 1453–1474

    Article  ADS  MathSciNet  Google Scholar 

  43. Tomizawa S., Morisawa Y. and Yasui Y. (2006). Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method. Phys. Rev. D 73: 064009

    Article  ADS  MathSciNet  Google Scholar 

  44. Walters P. (1982). An Introduction to Ergodic Theory. Springer-Verlag, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Ishibashi.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollands, S., Ishibashi, A. & Wald, R.M. A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric. Commun. Math. Phys. 271, 699–722 (2007). https://doi.org/10.1007/s00220-007-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0216-4

Keywords

Navigation