Communications in Mathematical Physics

, Volume 273, Issue 3, pp 651–675 | Cite as

Adiabatic Theorems for Quantum Resonances

  • Walid K. Abou SalemEmail author
  • Jürg Fröhlich


We study the adiabatic time evolution of quantum resonances over time scales which are small compared to the lifetime of the resonances. We consider three typical examples of resonances: The first one is that of shape resonances corresponding, for example, to the state of a quantum-mechanical particle in a potential well whose shape changes over time scales small compared to the escape time of the particle from the well. Our approach to studying the adiabatic evolution of shape resonances is based on a precise form of the time-energy uncertainty relation and the usual adiabatic theorem in quantum mechanics. The second example concerns resonances that appear as isolated complex eigenvalues of spectrally deformed Hamiltonians, such as those encountered in the N-body Stark effect. Our approach to study such resonances is based on the Balslev-Combes theory of dilatation-analytic Hamiltonians and an adiabatic theorem for nonnormal generators of time evolution. Our third example concerns resonances arising from eigenvalues embedded in the continuous spectrum when a perturbation is turned on, such as those encountered when a small system is coupled to an infinitely extended, dispersive medium. Our approach to this class of examples is based on an extension of adiabatic theorems without a spectral gap condition. We finally comment on resonance crossings, which can be studied using the last approach.


Metastable State Shape Resonance Escape Time Quantum Mechanical System Quantum Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dalfovo F., Giorgini S. and Pitaevskii L.P. (1999). Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71: 463–512 CrossRefADSGoogle Scholar
  2. 2.
    Simon B. (1973). Resonances in N-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97: 247 CrossRefGoogle Scholar
  3. 3.
    Simon B. (1978). Resonances and complex scaling: a rigorous overview. Int. J. Quant. Chem. 14: 529 CrossRefADSGoogle Scholar
  4. 4.
    Hunziker W. (1990). Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132: 177 zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Orth A. (1990). Quantum mechanical resonances and limiting absorption: the many body problem. Commun. Math. Phys. 126: 559 zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Herbst I. (1982/3). Exponential decay in the Stark effect. Commun. Math. Phys. 87: 429 CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Cattaneo L., Graf G.M. and Hunziker W. (2006). A general resonance theory based on Mourre’s inequality. Annales Henri Poincare 7: 583–601 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pfeifer P. and Fröhlich J. (1995). Generalized time-energy uncertainty relations and bounds on lifetimes of resonances. Rev. Mod. Phys. 67: 759 CrossRefADSGoogle Scholar
  9. 9.
    Soffer A. and Weinstein M.I. (1998). Time-dependent resonance theory. Geom. Funct. Anal. 8: 1086 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Merkli M. and Sigal I.M. (1999). A time-dependent theory of quantum resonances. Commun. Math. Phys. 201: 549 zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Jensen, A., Nenciu, G.: On the Fermi Golden Rule: Degenerate Eigenvalues. mp-arc/html/html/c/06/06-157.pdf,2006Google Scholar
  12. 12.
    Davies E.B. (1983). An adiabatic theorem applicable to the Stark effect. Commun. Math. Phys. 89: 329–339 zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Chakrabarti B.K. and Ascharyya M. (1999). Dynamical Transitions and Hysteresis. Rev. Mod. Phys. 71: 847–859 CrossRefADSGoogle Scholar
  14. 14.
    Cohen-Tannoudji C. (1998). Manipulating atoms with photons. Rev. Mod. Phys. 70: 707–719 CrossRefADSGoogle Scholar
  15. 15.
    Phillips W.D. (1998). Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70: 721–741 CrossRefADSGoogle Scholar
  16. 16.
    Kato T. (1958). On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap. 5: 435–439 CrossRefADSGoogle Scholar
  17. 17.
    Balslev E. and Combes J.M. (1971). Spectral properties of Schrödinger operators with dilation analytic interactions. Commun. Math. Phys. 22: 280 zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Abou Salem, W.: On the quasi-static evolution of nonequilibrium steady states., 2006. To appear in Annales Henri Poincare (2007)Google Scholar
  19. 19.
    Hagedorn G. and Joye A. (2002). Elementary exponential error estimates for the adiabatic approximation. J. Math. Anal. Appl. 267: 235–246 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Joye, A.: General adiabatic evolution with a gap condition., 2006Google Scholar
  21. 21.
    Nenciu G. (1993). Linear adiabatic theory, exponential estimates. Commun. Math. Phys. 152: 479–496 zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Bach V., Fröhlich J. and Sigal I.M. (1999). Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207: 249–290 zbMATHCrossRefADSGoogle Scholar
  23. 23.
    Bach V., Fröhlich J. and Sigal I.M. (1995). Mathematical Theory of nonrelativistic matter and radiation. Lett. Math. Phys. 34: 183–201 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Bach V., Fröhlich J. and Sigal I.M. (1998). Quantum electrodynamics of confined nonrelativistic particles. Adv. in Math. 137: 299–395 zbMATHCrossRefGoogle Scholar
  25. 25.
    Teufel S. (2002). A note on the adiabatic theorem without a gap condition. Lett. Math. Phys. 58: 261–266 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Teufel S. (2003). Adiabatic perturbation theory in quantum dynamics. Lecture Notes in Mathematics 1821. Springer-Verlag, Heidelberg, New York Google Scholar
  27. 27.
    Avron J.E. and Elgart A. (1999). Adiabatic theorem without a gap condition, Commun. Math. Phys. 203: 445–463 zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Avron, J.E., Elgart, A.: An adiabatic theorem without a spectral gap. In: Mathematical results in quantum mechanics (Prague 1998), Oper. Theory Adv. Appl. 108, Basel: Birkhäuser, (1999), pp. 3–12Google Scholar
  29. 29.
    Abou Salem W. and Fröhlich J. (2005). Adiabatic theorems and reversible isothermal processes. Lett. Math. Phys. 72: 153–163 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Abou Salem, W., Fröhlich, J.: In preparationGoogle Scholar
  31. 31.
    Combes J.M. and Thomas L. (1973). Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34: 251 zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Hunziker W. (1988). Notes on asymptotic perturbation theory for Schrödinger eigenvalue problems. Helv. Phys. Acta. 61: 257–304 MathSciNetGoogle Scholar
  33. 33.
    Herbst I. and Simon B. (1981). Dilation analyticity in constant electric field II. Commun. Math. Phys. 80: 181–216 zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Aguilar J. and Combes J.M. (1971). A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22: 269–279 zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Kato T. (1980). Perturbation theory for linear operators. Springer, Berlin zbMATHGoogle Scholar
  36. 36.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. I (Functional Analysis), Vol. II (Fourier Analysis, Self-Adjointness). New York: Academic Press (1975)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations