Skip to main content
Log in

Generalized Kähler Manifolds, Commuting Complex Structures, and Split Tangent Bundles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study generalized Kähler manifolds for which the corresponding complex structures commute and classify completely the compact four-dimensional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolov V (2001). Bihermitian surfaces with odd first Betti number. Math. Z. 238: 555–568

    Article  MATH  MathSciNet  Google Scholar 

  2. Apostolov, V., Gauduchon, P., Grantcharov, G.: Bihermitian structures on complex surfaces. Proc. London Math. Soc. 79(3), 414–428 (1999); Corrigendum, 92, 200–202 (2006)

  3. Bartocci C and Macrì E (2005). Classification of Poisson surfaces. Commun. Contemp. Math. 7: 89–95

    Article  MATH  MathSciNet  Google Scholar 

  4. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces. 2nd ed., Heidelberg: Springer, 2004

  5. Beauville, A.: Complex manifolds with split tangent bundle. In: ‘Complex analysis and algebraic geometry’. Berlin: de Gruyter, pp.61–70 (2000)

  6. Belgun F. (2000). On the metric structure of non-Kähler complex surfaces. Math. Ann. 317: 1–40

    Article  MATH  MathSciNet  Google Scholar 

  7. Buchdahl N (1999). On compact Kähler surfaces, Ann. Inst. Fourier 49: 287–302

    MATH  MathSciNet  Google Scholar 

  8. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. in Math., doi: 10.1016/j.aim.2006.09.008,2007

  9. deBartolomeis P. and Tomassini A. (2006). On Solvable Generalized Calabi-Yau Manifolds. Ann. Inst. Fourier (Grenoble) 56(5): 1281–1296

    MathSciNet  Google Scholar 

  10. Dloussky G. (2006). On surfaces of class VII +0 with numerically anticanonical devisor. Amer. J. Math. 128(3): 639–670

    Article  MATH  MathSciNet  Google Scholar 

  11. Egidi N. (2001). Special metrics on compact complex manifolds. Diff. Geom. Appl. 14: 217–234

    Article  MATH  MathSciNet  Google Scholar 

  12. Fino A. and Grantcharov G. (2004). Properties of manifolds with skew-symmetric torsion and special holonomy. Adv. Math. 189: 439–450

    Article  MATH  MathSciNet  Google Scholar 

  13. Gates S.J., Hull C.M. and Roček M (1984). Twisted multiplets and new supersymmetric nonlinear sigma models. Nuc. Phys. B 248: 157–186

    Article  ADS  Google Scholar 

  14. Gauduchon P. (1984). La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267: 495–518

    Article  MATH  MathSciNet  Google Scholar 

  15. Gauduchon, P.: Le premier espace de cohomologie de deRham d’une surface complexe à premier nombre de Betti impair. Unpublished preprint

  16. Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Un. Mat. It. 11-B, Suppl. fasc. 257–288 (1997)

  17. Gualtieri, M.: Generalized complex geometry. D. Phil. Thesis, University of Oxford, 2003, http://arxiv. org/list/math.DG/0401221 (2003)

  18. Gualtieri, M.: Generalized geometry and the Hodge decomposition.http://arxiv.org/list/math.DG/ 0409093, 2004

  19. Hitchin N.J. (2003). Generalized Calabi-Yau manifolds. Q. J. Math. 54: 281–308

    Article  MATH  MathSciNet  Google Scholar 

  20. Hitchin N.J. (2006). Instantons and generalized Kähler geometry. Commun. Math. Phys. 265: 131–164

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Hitchin, N.J.: Bihermitian metrics on Del Pezzo Surfaces. http://arxiv.org/list/math.DG/0608213, 2006

  22. Hitchin, N.J.: Private communication

  23. Inoue M. (1974). On surfaces of class VII 0, Invent. Math. 24: 269–310

    MATH  Google Scholar 

  24. Kobak P. (1999). Explicit doubly-Hermitian metrics. Differ. Geom. Appl. 10: 179–185

    Article  MATH  MathSciNet  Google Scholar 

  25. Kobayashi S., Nomizu K. Faundations of Differential Geometry. Vol.II, Newyork: Interscience Publishers, 179 (1963)

  26. Lamari A. (1999). Courants kählériens et surfaces compactes.. Ann Inst. Fourier 49: 263–285

    MATH  MathSciNet  Google Scholar 

  27. Lin Y. and Tolman S. (2006). Symmetries in generalized Kähler geometry. Commun. Math. Phys. 268: 199–222

    Article  ADS  MathSciNet  Google Scholar 

  28. Lindström U., Rócek M., Zabzine M. and Unge R. (2007). Generalized Kähler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269: 833–849

    Article  ADS  Google Scholar 

  29. Lyakhovich S. and Zabzine M. (2002). Poisson geometry of sigma models with extended supersymmetry. Phys.Lett. B 548: 243–251

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Pontecorvo M. (1997). Complex structures on Riemannian four-manifolds. Math. Ann. 309: 159–177

    Article  MATH  MathSciNet  Google Scholar 

  31. Siu Y.-T. (1983). Every K3 surface is Kähler. Invent. Math. 73: 139–150

    MATH  MathSciNet  Google Scholar 

  32. Spindel Ph., Sevrin A., Troost W. and Proeyen A. (1988). Complex structures on parallelised group manifolds and supersymmetric σ-models. Phys. Lett. B 206: 71–74

    Article  ADS  MathSciNet  Google Scholar 

  33. Todorov A. (1980). Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces. Invent. Math. 61: 251–265

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Vaisman I. (1982). Some curvature properties of complex surfaces. Ann Mat. Pure Appl. 32: 1–18

    Article  MathSciNet  Google Scholar 

  35. Wall C.T.C. (1986). Geometric structures on compact complex analytic surfaces. Topology 25: 119–153

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vestislav Apostolov.

Additional information

Communicated by G.W. Gibbons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolov, V., Gualtieri, M. Generalized Kähler Manifolds, Commuting Complex Structures, and Split Tangent Bundles. Commun. Math. Phys. 271, 561–575 (2007). https://doi.org/10.1007/s00220-007-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0196-4

Keywords

Navigation