Communications in Mathematical Physics

, Volume 265, Issue 1, pp 1–44 | Cite as

Scaling Limit for the Space-Time Covariance of the Stationary Totally Asymmetric Simple Exclusion Process

  • Patrik L. FerrariEmail author
  • Herbert Spohn


The totally asymmetric simple exclusion process (TASEP) on the one-dimensional lattice with the Bernoulli ρ measure as initial conditions, 0<ρ<1, is stationary in space and time. Let N t (j) be the number of particles which have crossed the bond from j to j+1 during the time span [0,t]. For Open image in new window we prove that the fluctuations of N t (j) for large t are of order t1/3 and we determine the limiting distribution function Open image in new window , which is a generalization of the GUE Tracy-Widom distribution. The family Open image in new window of distribution functions have been obtained before by Baik and Rains in the context of the PNG model with boundary sources, which requires the asymptotics of a Riemann-Hilbert problem. In our work we arrive at Open image in new window through the asymptotics of a Fredholm determinant. Open image in new window is simply related to the scaling function for the space-time covariance of the stationary TASEP, equivalently to the asymptotic transition probability of a single second class particle.


Neural Network Covariance Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baik, J., Rains, E.M.: Symmetrized random permutations. In: Random Matrix Models and Their Applications, Vol. 40, pp. 1–19. Cambridge University Press, Cambridge (2001)Google Scholar
  4. 4.
    van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 54, 2026–2029 (1985)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Colaiori, F., Moore, M.A.: Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension. Phys. Rev. E 65, 017105 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Ferrari, P.L.: Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. Commun. Math. Phys. 252, 77–109 (2004)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Ferrari, P.L., Spohn, H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A 38, L557–L561 (2005)Google Scholar
  8. 8.
    Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503–544 (2004)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)ADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRefADSGoogle Scholar
  13. 13.
    Krug, J., Meakin, P., Halpin-Healy, T.: Amplitude universality for driven interfaces and directed polymers in random media. Phys. Rev. A 45, 638–653 (1992)CrossRefADSGoogle Scholar
  14. 14.
    Liggett, T.M.: Coupling the simple exclusion process. Ann. Probab. 4, 339–356 (1976)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Liggett, T.M.: Stochastic interacting systems: contact, voter and exclusion processes. Springer Verlag, Berlin (1985)Google Scholar
  16. 16.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics. Grundlehren Band 52, Springer Verlag, Berlin (1966)Google Scholar
  17. 17.
    Okounkov, A.: Infinite wedge and random partitions. Selecta Math. 7, 57–81 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Prähofer, M.: Stochastic surface growth. Ph.D. thesis, Ludwig-Maximilians-Universität, München. Available at:, 2003Google Scholar
  19. 19.
    Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: In and out of equilibrium (V. Sidoravicius, ed.), Progress in Probability, Boston Basel: Birkhäuser, 2002Google Scholar
  20. 20.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)CrossRefGoogle Scholar
  22. 22.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005)Google Scholar
  23. 23.
    Spohn, H.: Excess noise for a lattice gas model of a resistor. Z. Phys. B 57, 255–261 (1984)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Zentrum Mathematik and Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations