Skip to main content
Log in

Fourier-Mukai Transform and Adiabatic Curvature of Spectral Bundles for Landau Hamiltonians on Riemann Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the family of Landau Hamiltonians on a Riemann surface S by means of a Nahm transform and an integral functor related to the Fourier-Mukai transform associated to its jacobian variety J(S). This approach allows us to explicitly determine the spectral bundles associated to the holomorphic Landau levels. As a first main result we prove that these spectral bundles are holomorphic stable bundles with respect to the canonical polarization of J(S) determined by the theta divisor .

The spectral bundles are endowed with a natural connection and the adiabatic charge transport properties of the corresponding Landau levels are determined by the adiabatic curvature of , which coincides with the curvature of the determinant bundle det . By means of the theory of analytic torsion and determinant bundles developed by Bismut, Gillet and Soulé we compute the adiabatic curvature of the spectral bundles on an arbitrary Riemann surface. We prove that all the holomorphic Landau levels have the same charge transport coefficients but their adiabatic curvatures differ by a term which involves the relative analytic torsion of different powers of the canonical bundle of S twisted by a fixed line bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Seiler, R.: Quantization of the Hall Conductance for general, multiparticle Schrödinger Hamiltonians. Phys. Rev. Lett. 54 (4) 259–262 (1985)

    Google Scholar 

  2. Avron, J.E., Seiler, R., Yaffe, L.G.: Adiabatic theorems and applications to the quantum Hall effect. Commun. Math. Phys. 110, 33–49 (1987)

    Google Scholar 

  3. Avron, J.E., Raveh, A., Zur, B.: Adiabatic quantum transport in multiply connected systems. Rev. Mod. Phys. 60 (4), 873–915 (1988)

    Google Scholar 

  4. Avron, J.E.: Adiabatic quantum transport. In: Bregola, M., Marmo, G., Morandi, G. (eds.), Anomalies, phases, defects . . . . Lect. Int. Sch. Ferrara 1989, Napoli: Bibliopolis, 1990, pp. 9–82

  5. Avron, J.E., Seiler, R., Zograf, P.G.: Adiabatic quantum transport: Quantization and fluctuations. Phys. Rev. Lett. 73 (24), 3255–3257 (1994)

    Google Scholar 

  6. Avron, J.E.: Adiabatic quantum transport. In: Akkermans, E., Montambaux, G., Pichard, J.L., Zinn-Justin, J. Mesoscopic quantum physics. Proceedings, Les Houches 1994. Amsterdam: Elsevier, 1995, pp. 741–791

  7. Bartocci, C., Bruzzo, U., Hernández Ruipérez, D.: Fourier-Mukai transform and index theory. Manuscr. Math. 85, 141–163 (1994)

  8. Birkenhake, C., Lange, H.: Complex tori, PM 177. Boston: Birkhäuser, 1999

  9. Bismut, J.M.: The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83, 91–151 (1986)

    Google Scholar 

  10. Bismut, J.M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles I. Bott-Chern forms and analytic torsion. Commun. Math. Phys. 115, 49–78 (1988)

    Google Scholar 

  11. Bismut, J.M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles II. Direct images and Bott-Chern forms. Commun. Math. Phys. 115, 79–126 (1988)

    Google Scholar 

  12. Bismut, J.M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles III. Quillen metrics and holomorphic determinants. Commun. Math. Phys. 115, 301–351 (1988)

    Google Scholar 

  13. Bost, J.B.: Fibrés déterminants, déterminants régularisés et mesures sur les espaces de modules des courbes complexes. Séminaire Bourbaki 1986–87, Astérisque 152–153, 113–149 (1988)

  14. Donaldson, S.K., Kronheimer, P.B.: The geometry of four manifolds. Oxford: Clarendon Press, 1991

  15. Ein, L., Lazarsfeld, R.: Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves. In: Ellingsrud, G., Peskine, C., Sacchiero, G., Strømme, S. A. (eds.), Complex Projective Geometry (Trieste, 1989 / Bergen, 1989). Cambridge: London Math. Soc. Lecture Note Ser. 179, Cambridge: Cambridge University Press, 1992, pp. 149–156

  16. Fay, J.: Kernel functions, analytic torsion, and moduli spaces. Mem. Amer. Math. Soc. 96, no. 464, Providence, RI: AMS 1992

  17. García-Prada, O., Hernández Ruipérez, D., Pioli, F., Tejero Prieto, C.: Fourier-Mukai and Nahm transforms for holomorphic triples on elliptic curves. J. Geom. Phys., 55, 353–384 (2005)

    Google Scholar 

  18. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley & Sons, 1978

  19. Hartshorne, R.: Residues and duality. Berlin: Lecture Notes in Mathematics 20, Berlin-Heidelberg-New York: Springer-Verlag, 1966

  20. Hartshorne, R.: Algebraic geometry. GTM 52: New York-Heidelberg, Springer-Verlag, 1977

  21. Jardim, M.: A survey on Nahm transform. J. Geom Phys. 52, 313–327 (2004)

    Google Scholar 

  22. Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan 5, 435–439 (1950)

    Google Scholar 

  23. Kempf, G.R.: A problem of Narasimhan. Contemp. Math. 136, 283–286 (1992)

    Google Scholar 

  24. Klein, M., Seiler, R.: Power-law corrections to the Kubo formula vanish in quantum Hall systems. Commun. Math. Phys. 128, 141–160 (1990)

    Google Scholar 

  25. Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves I. Preliminaries on ``det'' and ``Div''. Math. Scand. 39, 19–55 (1976)

  26. Kobayashi, S.: Differential geometry of complex vector bundles. Princeton: Princeton University Press, 1987

  27. Kohmoto, M.: Topological invariants and the quantization of the Hall conductance. Ann. Phys. 160, 343–354 (1985)

    Google Scholar 

  28. Lange, H., Birkenhake, C.: Complex Abelian varieties. Berlin: Springer-Verlag, 1992

  29. Mateos Guilarte, J., Porras, J.M., de la Torre Mayado, M.: Elliptic theta functions and the fractional quantum Hall effect. J. Geom. Phys. 27, 297–332 (1997)

  30. Mukai, S.: Duality between D(X) and with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    Google Scholar 

  31. Mukai, S.: Fourier functor and its application to the moduli of bundles on an abelian variety. Adv. Pure Math. 10, 515–550 (1987)

    Google Scholar 

  32. Niu, Q., Thouless, D.J.: Nonlinear corrections to the quantization of Hall conductance. Phys. Rev. B 30, 3561–3562 (1984)

    Google Scholar 

  33. Niu, Q., Thouless, D.J., Wu, Y-S.: Quantized Hall conductance as a topological invariant. Phys. Rev. B 31, 3372–3377, (1985)

    Google Scholar 

  34. Pioli, F.: Funtori integrali e fasci di Picard su varietà jacobiane e di Prym. Tesi di Dottorato, consorzio Genova-Torino, Ciclo IX, 1999

  35. Quillen, D.: Determinants of Cauchy-Riemann operators on Riemann surfaces. Funct. Anal. Appl. 19, 31–34 (1986)

    Google Scholar 

  36. Ray, D.B., Singer, I.M.: R-Torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Google Scholar 

  37. Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math. 98, 154–177 (1973)

    Google Scholar 

  38. Richter, T., Seiler, R.: Geometric properties of transport in quantum Hall systems. In: Gausterer, H., Grosse, H., Pittner, L. (eds.), Geometry and quantum physics. Proceedings, Schladming, 1999. Lecture Notes in Phys. 543, Berlin: Springer-Verlag, 2000, pp. 275–310

  39. Śniatycki, J.: Geometric quantization and quantum mechanics. New York-Berlin: Springer-Verlag, 1980

  40. Tejero Prieto, C.: Quantization of a rigid body in a magnetic monopole. Diff. Geom. and Appl. 14, 157–179 (2001)

    Google Scholar 

  41. Tejero Prieto, C.: Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces. Diff. Geom. and Appl. in press

  42. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49 (6), 405–408 (1982)

    Google Scholar 

  43. Varnhagen, R.: Topology and fractional quantum Hall effect. Nucl. Phys. B 443, 501–515 (1995)

    Google Scholar 

  44. Woodhouse, N.: Geometric quantization. Oxford: Clarendon Press, 1992

  45. Wu, Y.: Quantization of a particle in a background Yang-Mills field. J. Math. Phys. 39, 867–875 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Tejero Prieto.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieto, C. Fourier-Mukai Transform and Adiabatic Curvature of Spectral Bundles for Landau Hamiltonians on Riemann Surfaces. Commun. Math. Phys. 265, 373–396 (2006). https://doi.org/10.1007/s00220-006-1548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1548-1

Keywords

Navigation