Advertisement

Communications in Mathematical Physics

, Volume 265, Issue 1, pp 201–226 | Cite as

A Vertex Formalism for Local Ruled Surfaces

  • Duiliu-Emanuel Diaconescu
  • Bogdan Florea
  • Natalia Saulina
Article

Abstract

We develop a vertex formalism for topological string amplitudes on ruled surfaces with an arbitrary number of reducible fibers embedded in a Calabi-Yau threefold. Our construction is based on large N duality and localization with respect to a degenerate torus action. We also discuss potential generalizations of our formalism to a broader class of Calabi-Yau threefolds using the same underlying principles.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aganagic, M., Mariño, M., Vafa, C.: ``All Loop Topological String Amplitudes from Chern-Simons Theory'' Commun. Math. Phys. 247, 467(2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: ``The Topological Vertex''. Commun. Math. Phys. 254, 425 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    Aganagic, M., Dijkgraaf, R., Klemm, A., Mariño, M., Vafa, C.: ``Topological Strings and Integrable Hierarchies''.Commun.Math.Phys. 261, 451 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aganagic, M., Ooguri, H., Saulina, N., Vafa, C.: ``Black Holes, q-Deformed 2D Yang-Mills and Nonperturbative Topological Strings''. Nucl.Phys. B715, 304 (2005)Google Scholar
  5. 5.
    Aganagic, M., Neitzke, A., Vafa, C.: ``BPS Microstates and the Open Topological String Wave Function''.(http://arxiv.org/List/hep-th/0504054, 2005
  6. 6.
    Bryan, J., Pandharipande, R.: ``The Local Gromov-Witten Theory of Curves''.http://arxiv.org/List/math.AG/0411037, 2004
  7. 7.
    Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, Vol. 68, Providence, RI: AMS, 1999Google Scholar
  8. 8.
    Dabholkar, A., Denef, F., Moore, G. W., Pioline, B.: ``Exact and Asymptotic Degeneracies of Small Black Holes''. JHEP 0508, 021 (2005)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Diaconescu, D.-E., Florea, B., Grassi, A.: ``Geometric Transitions and Open String Instantons''. Adv. Theor. Math. Phys. 6, 619 (2002)MathSciNetGoogle Scholar
  10. 10.
    Diaconescu, D.-E., Florea, B., Grassi, A.: ``Geometric Transitions, del Pezzo Surfaces and Open String Instantons''. Adv. Theor. Math. Phys. 6, 643 (2002)MathSciNetGoogle Scholar
  11. 11.
    Diaconescu, D.-E., Florea, B.: ``Large N Duality for Compact Calabi-Yau Threefolds''. Adv. Theor.Math.Phys. 9, 31 (2005)MathSciNetGoogle Scholar
  12. 12.
    Diaconescu, D.-E., Florea, B.: ``Localization and Gluing of Topological Amplitudes''. Commun. Math. Phys. 257, 119 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Diaconescu, D.-E., Dijkgraaf, R., Donagi, R., Hofman, C., Pantev, T.: ``Geometric Transitions and Integrable Systems''. http://arxiv.org/List/hep-th/0506196, 2005
  14. 14.
    Hartshorne, R.: Algebraic Geometry, Berlin-Heidelberg-New York: Springer-Verlag 1993Google Scholar
  15. 15.
    Iqbal, A., Kashani-Poor, A.-K.: ``Instanton Counting and Chern-Simons Theory''. Adv. Theor. Math. Phys. 7, 459 (2003)Google Scholar
  16. 16.
    Iqbal, A., Kashani-Poor, A.-K.: ``SU(N) Geometries and Topological String Amplitudes''. http://arxiv.org/List/hep-th/0306032, 2003
  17. 17.
    Katz, S., Morrison, D.R., Plesser, R.: ``Enhanced Gauge Symmetry in Type II String Theory''. Nucl. Phys. B477 74 (1996)Google Scholar
  18. 18.
    Liu, C.-C.M., Liu, K., Zhou, J.: ``A Proof of a Conjecture of Mariño-Vafa on Hodge Integrals''. J. Diff. Geom. 65, 289 (2004)Google Scholar
  19. 19.
    Liu, J., Liu, C.-C. M., Liu, K., Zhou, J.: ``A Formula of Two-Partition Hodge Integrals''. http://arxiv.org/List/math.AG/0310272, 2003
  20. 20.
    Li, J., Liu, C.-C. M., Liu,K., Zhou, J.: ``A Mathematical Theory of the Topological Vertex''. http://arxiv.org/List/math.AG/0408426, 2004
  21. 21.
    Okounkov, A., Pandharipande, R.: ``Hodge Integrals and Invariants of the Unknot''. Geom. Topol. 8, 675 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ooguri, H., Strominger, A., Vafa, C.: ``Black Hole Attractors and the Topological String''. Phys. Rev. D 70, 045024 (2004)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Szendröi, B.: ``Calabi-Yau Threefolds with a Curve of Singularities and Counterexamples to the Torelli Problem''. http://arxiv.org/List/math.AG/9901078, 1999
  24. 24.
    Szendröi, B.: ``Artin Group Actions on Derived Categories of Threefolds.'' http://arxiv.org/List/math.AG/0210121, 2002
  25. 25.
    Szendröi, B.: ``Enhanced Gauge Symmetry and Braid Group Actions'', Commun. Math. Phys. 238, 35 (2003)ADSzbMATHGoogle Scholar
  26. 26.
    Vafa, C.: ``Two Dimensional Yang-Mills, Black Holes and Topological Strings.'' http://arxiv.org/List/hep-th/0406058, 2004
  27. 27.
    Witten, E., ``Chern-Simons Gauge Theory as a String Theory''.In: The Floer Memorial Volume, Hofer, H., Taubes, C.H., Weinstein, A., Zehnder, E., eds, Basel-Boston: Birkhäuser, 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Duiliu-Emanuel Diaconescu
    • 1
  • Bogdan Florea
    • 1
  • Natalia Saulina
    • 2
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  2. 2.Jefferson Physical LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations