Advertisement

Communications in Mathematical Physics

, Volume 265, Issue 1, pp 131–164 | Cite as

Instantons, Poisson Structures and Generalized Kähler Geometry

  • Nigel HitchinEmail author
Article

Abstract

Using the idea of a generalized Kähler structure, we construct bihermitian metrics on CP2 and CP1×CP1, and show that any such structure on a compact 4-manifold M defines one on the moduli space of anti-self-dual connections on a fixed principal bundle over M. We highlight the role of holomorphic Poisson structures in all these constructions.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostolov, V., Gauduchon, p., Grantcharov, G.: Bihermitian structures on complex surfaces. Proc. London Math. Soc. 79, 414–428 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bartocci, C., Macrì. E.: Classification of Poisson surfaces. Commun. Contemp. Math. 7, 89–95 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bottacin, F.: Poisson structures on moduli spaces of sheaves over Poisson surfaces. Invent. Math. 121, 421–436 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Buchdahl, N.P.: Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gates, S.J., C. M. Hull, Roček, M.: Twisted multiplets and new supersymmetric nonlinear σ-models. Nucl. Phys. B 248, 157–186 (1984)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Gualtieri, M.: Generalized complex geometry.http://arxiv.org/list/math.DG/0401221, 2004
  7. 7.
    Hitchin, N.J.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hurtubise, J.: Twistors and the geometry of bundles over P2(C). Proc. London Math. Soc. 55, 450–464 (1987)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Khesin, B., Rosly, A.: Symplectic geometry on moduli spaces of holomorphic bundles over complex surfaces. In: The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun. 24, Providence, RI: Amer. Math. Soc., 1999, pp. 311–323Google Scholar
  10. 10.
    Kobak, P.: Explicit doubly-Hermitian metrics. Differ. Geom. Appl. 10, 179–185 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Li, J., Yau, S-T.: Hermitian Yang-Mills connections on non-Kähler manifolds. In: ``Mathematical aspects of string theory, (San Diego, Calif., 1986)'', Adv. Ser. Math. Phys., 1, Singapore: World Sci. Publishing, 1987, pp. 560–573Google Scholar
  12. 12.
    Lübke, M., Teleman, A.: The Kobayashi-Hitchin correspondence. Singapore: World Scientific, 1995Google Scholar
  13. 13.
    Lyakhovich, S., Zabzine, M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548, 243–251 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Mathematical InstituteOxfordUK

Personalised recommendations