Advertisement

Communications in Mathematical Physics

, Volume 265, Issue 1, pp 227–274 | Cite as

On the Averages of Characteristic Polynomials From Classical Groups

  • Daniel Bump
  • Alex GamburdEmail author
Article

Abstract

We provide an elementary and self-contained derivation of formulae for averages of products and ratios of characteristic polynomials of random matrices from classical groups using classical results due to Weyl and Littlewood.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreev, A.V., Simons, B.D.: Correlators of spectral determinants in quantum chaos. Phys. Rev. Lett. 75(12), 2304–2307, (1995)CrossRefADSGoogle Scholar
  2. 2.
    Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44(8), 3657–3670, (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baker, T.H., Forrester, P.J.: Finite-N fluctuation formulas for random matrices. J. Stat. Phys. 88, 1371–1386 (1997)ADSzbMATHGoogle Scholar
  5. 5.
    Basor, E.L., Forrester, P.J.: Formulas for the evaluation of Toeplitz determinants with rational generating functions. Math. Nachr. 170, 5–18 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. in Math. 64(2), 118–175 (1987)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Berele, A., Remmel, J.B.: Hook flag characters and their combinatorics. J. Pure Appl. Algebra, 35, 225–245 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. http:// arxiv.org/list/math-ph/0407065, 2004
  9. 9.
    Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214(1), 111–135 (2000)CrossRefGoogle Scholar
  10. 10.
    Brézin, E., Hikami, S.: Characteristic polynomials of random matrices at edge singularities. Phys. Rev. E (3) 62(3, part A), 3558–3567 (2000)Google Scholar
  11. 11.
    Brézin, E., Hikami, S.: Characteristic polynomials of real symmetric random matrices. Commun. Math. Phys. 223(2), 363–382 (2001)Google Scholar
  12. 12.
    Brézin, E., Hikami, S.: New correlation functions for random matrices and integrals over supergroups. J. Phys. A 36(3), 711–751 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bump, D.: Lie groups. Graduate Texts in Mathematics. New York: Springer-Verlag, 225, (2004)Google Scholar
  14. 14.
    Bump, D., Diaconis, P.: Toeplitz minors. J. Combin. Theory Ser. A 97(2), 252–271 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Conrey, B., Farmer, D., Zirnbauer, M.: Autocorrelation of ratios of characteristic polynomials. Preprint, 2004Google Scholar
  16. 16.
    Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M. O., Snaith, N.C.: Integral moments of zeta and l-functions. Proc. London Math. Soc. 91, 33–104 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Autocorrelation of random matrix polynomials. Commun. Math. Phys. 237(3), 365–395 (2003)MathSciNetGoogle Scholar
  18. 18.
    Conrey, J.B., Forrester, P., Snaith, N.C.: Averages of ratios of characteristic polynomials for compact classical groups. Int. Math. Res. Notices 7, 397–431 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Conrey, J.B., Ghosh, A.: A conjecture for the sixth power moment of the Riemann zeta-function. Int. Math. Res. Nortices 15, 775–780 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Conrey, J.B., Gonek, S.: High moments of the Riemann zeta-function. Duke. Math. J., 107, 577–604 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Day, K.M.: Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function. Trans. Amer. Math. Soc. 206, 224–245 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Diaconis, P.: Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40(2), 155–178 (electronic), (2003)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Diaconis, P., Gamburd, A.: Random matrices, magic squares and matching polynomials. Electronic J. of Combinatorics 11(2), (2004)Google Scholar
  24. 24.
    Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)CrossRefMathSciNetGoogle Scholar
  25. 25.
    El Samra, N., King, R.C.: Dimensions of irreducible representations of the classical Lie groups. J. Phys. A, 12(12), 2317–2328 (1979)CrossRefGoogle Scholar
  26. 26.
    Forrester, P.J.: Log-gases and Random Matrices. http://www.ms.unimelb.edu.au/~matpjf/matpjf.html.
  27. 27.
    Forrester, P.J., Keating, J.P.: Singularity dominated strong fluctuations for some random matrix averages. Commun. Math. Phys. 250(1), 119–131 (2004)MathSciNetGoogle Scholar
  28. 28.
    Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nuclear Phys. B 621(3), 643–674 (2002)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Fyodorov, Y.V., Keating, J.P.: Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations. J. Phys. A, 36(14), 4035–4046 (2003)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Fyodorov, Y.V., Strahov, E.: Characteristic polynomials of random Hermitian matrices and Duistermaat-Heckman localisation on non-compact Kähler manifolds. Nuclear Phys. B, 630(3), 453–491 (2002)MathSciNetGoogle Scholar
  31. 31.
    Fyodorov, Y.V., Strahov, E.: On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble. Nuclear Phys. B 647(3), 581–597 (2002)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Fyodorov, Y.V., Strahov, E.: An exact formula for general spectral correlation function of random Hermitian matrices. J. Phys. A 36(12), 3203–3213 (2003)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Ladnor Geissinger: Hopf algebras of symmetric functions and class functions. In: Combinatoire et représentation du groupe symètrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lecture Notes in Math., Vol. 579. Berlin: Springer, 168–181, (1997)Google Scholar
  34. 34.
    Howe, R.: θ-series and invariant theory. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.: 1979, pp. 275–285Google Scholar
  35. 35.
    Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313(2), 539–570 (1989)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Howe, R., Tan, E.-C., Willenbring, J.: Stable branching rules. Trans. Amer. Math. Soc. 357(4), (2004)Google Scholar
  37. 37.
    Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures (1992) (Tel Aviv). Ramat Gan: Bar-Ilan Univ., Israel Math. Conf. Proc., 8, 1–182, (1995)MathSciNetGoogle Scholar
  38. 38.
    Jimbo, M., Miwa, T.: On a duality of branching rules for affine Lie algebras. In: Algebraic groups and related topics (Kyoto/Nagoya, 1983). Adv. Stud. Pure Math., Amsterdam: North-Holland, 17–65 (1985)Google Scholar
  39. 39.
    Keating, J.P., Snaith, N.C.: Random matrix theory and L-functions at s = 1 / 2. Commun. Math. Phys. 214(1), 91–110 (2000)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Keating, J.P., Snaith, N.C.: Random matrix theory and ζ( 1 / 2 + it ). Commun. Math. Phys. 214(1), 57–89, (2000)CrossRefMathSciNetGoogle Scholar
  41. 41.
    King, R.: Branching rules for classical Lie groups using tensor and spinor methods. J. Phys. A 8, 429–449 (1975)CrossRefADSzbMATHMathSciNetGoogle Scholar
  42. 42.
    Krattenthaler, C.: Identities for classical group characters of nearly rectangular shape. J. Algebra 209, 1–64 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Littlewood, D.E.: Some properties of s-functions. Proc. London Math. Soc. (2) 40, 49–70 (1936)Google Scholar
  44. 44.
    Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. New York: Oxford University Press, 1940Google Scholar
  45. 45.
    Littlewood, D.E.: On invariant theory under restricted groups. Philos. Trans. Roy. Soc. London Ser. A. 239, 387–417 (1944)ADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. New York: The Clarendon Press Oxford University Press, Second edition, 1995. (With contributions by A. Zelevinsky, Oxford Science Publications)Google Scholar
  47. 47.
    Mehta, M.L., Normand, J.-M.: Moments of the characteristic polynomial in the three ensembles of random matrices. J. Phys. A 34(22), 4627–4639, 2001CrossRefMathSciNetGoogle Scholar
  48. 48.
    Okada, S.: Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra, 205, 337-367 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Rains, E.: Increasing subsequences and the classical groups. Electronic J. of Combinatorics 5, #R12 (1998)Google Scholar
  50. 50.
    Schmidt, P., Spitzer, F.: The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand., 8, 15–38 (1960)zbMATHMathSciNetGoogle Scholar
  51. 51.
    Stanley, R.P.: Enumerative Combinatorics, Vol. 2. Cambridge: Cambridge University Press, 1999Google Scholar
  52. 52.
    Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach. Commun Math. Phys. 241(2-3), 343–382 (2003)Google Scholar
  53. 53.
    Szegö, G.: Orthogonal Polynomials. Providence, RI: AMS, 1967Google Scholar
  54. 54.
    Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton, NJ.: Princeton University Press, 1939Google Scholar
  55. 55.
    Whippman, M.L.: Branching rules for simple Lie groups. J. Math. Phys. 6, 1534–1539 (1965)CrossRefzbMATHMathSciNetADSGoogle Scholar
  56. 56.
    Zelevinsky, A.V.: Representations of finite classical groups, Volume 869 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1981Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  3. 3.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations