Advertisement

Communications in Mathematical Physics

, Volume 271, Issue 1, pp 223–246 | Cite as

Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields

  • Bojko Bakalov
  • Nikolay M. Nikolov
  • Karl-Henning RehrenEmail author
  • Ivan Todorov
Article

Abstract

The superselection sectors of two classes of scalar bilocal quantum fields in D ≥ 4 dimensions are explicitly determined by working out the constraints imposed by unitarity. The resulting classification in terms of the dual of the respective gauge groups U(N) and O(N) confirms the expectations based on general results obtained in the framework of local nets in algebraic quantum field theory, but the approach using standard Lie algebra methods rather than abstract duality theory is complementary. The result indicates that one does not lose interesting models if one postulates the absence of scalar fields of dimension D−2 in models with global conformal invariance. Another remarkable outcome is the observation that, with an appropriate choice of the Hamiltonian, a Lie algebra embedded into the associative algebra of observables completely fixes the representation theory.

Keywords

Gauge Group Commutation Relation Young Diagram Irreducible Unitary Representation Vertex Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakalov B. and Nikolov N.M. (2006). Jacobi identity for vertex algebras in higher dimensions. J. Math. Phys. 47: 053505 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baumann K. (1976). There are no scalar Lie fields in three or more dimensional space-time. Commun. Math. Phys. 47: 69–74 zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Structure of representations that are generated by vectors of highest weight (Russian). Funk. Anal. i Prilozen. 5, 1–9 (1971); English translation, Funct. Anal. Appl. 5, 1–8 (1971)Google Scholar
  4. 4.
    Boerner, H.: Representations of Groups, 2nd edition, Amsterdam: North-Holland Publishing Company 1970Google Scholar
  5. 5.
    Buchholz D., Doplicher S., Longo R. and Roberts J.E. (1992). A new look at Goldstone’s theorem. Rev. Math. Phys. SI   1: 49–84 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carpi S. and Conti, R. (2005). Classification of subsystems for graded-local nets with trivial superselection structure. Commun. Math. Phys. 253: 423–449 zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Doplicher S. and Roberts J.E. (1990). Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131: 51–107 zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Enright, T.J., Parthasarathy, R.: A proof of a conjecture of Kashiwara and Vergne. In: Noncommutative harmonic analysis and Lie groups (Marseille, 1980), Lecture Notes in Math. 880, Berlin-New York: Springer, 1981, pp. 74–90Google Scholar
  9. 9.
    Enright, T.J., Howe, R., Wallach, N.: A classification of unitary highest weight modules. In: Representation theory of reductive groups (Park City, Utah, 1982), Progr. Math. 40, Boston, MA: Birkhäuser, 1983, pp. 97–143Google Scholar
  10. 10.
    Haag R. (1992). Local Quantum Physics. Springer, Berlin-New York zbMATHGoogle Scholar
  11. 11.
    Jakobsen H.P. (1981). The last possible place of unitarity for certain highest weight modules. Math. Ann. 256: 439–447 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jordan P. (1935). Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem. Zeitschr. für Physik 94: 531 zbMATHCrossRefGoogle Scholar
  13. 13.
    Kac V. and Radul A. (1996). Representation theory of the vertex algebra W 1+∞. Transform. Groups 1: 41–70 zbMATHMathSciNetGoogle Scholar
  14. 14.
    Kashiwara M. and Vergne M. (1978). On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44: 1–47 zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Lowenstein J.H. (1967). The existence of scalar Lie fields. Commun. Math. Phys. 6: 49–60 zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Nikolov N.M. (2005). Vertex algebras in higher dimensions and globally conformal invariant quantum field theory. Commun. Math. Phys. 253: 283–322 zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Nikolov, N.M., Rehren, K.-H., Todorov, I.T.: Harmonic bilocal fields generated by globally conformal invariant scalar fields. (In preparation)Google Scholar
  18. 18.
    Nikolov N.M., Rehren K.-H. and Todorov I.T. (2005). Partial wave expansion and Wightman positivity in conformal field theory. Nucl. Phys. B 722: 266–296 CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Nikolov N.M., Stanev Ya.S. and Todorov I.T. (2002). Four dimensional CFT models with rational correlation functions. J. Phys. A: Math. Gen. 35: 2985–3007 zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Nikolov, N.M., Stanev, Ya.S., Todorov, I.T.: Globally conformal invariant gauge field theory with rational correlation functions. Nucl. Phys. B670[FS], 373–400 (2003)Google Scholar
  21. 21.
    Nikolov N.M. and Todorov I.T. (2001). Rationality of conformally invariant local correlation functions on compactified Minkowski space. Commun. Math. Phys. 218: 417–436 zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Nikolov N.M. and Todorov I.T. (2005). Elliptic thermal correlation functions and modular forms in a globally conformal invariant QFT. Rev. Math. Phys. 17: 613–667 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Reeh H. and Schlieder S. (1961). Bemerkungen zur Unitäräquivalenz von Lorentz-invarianten Feldern. Nuovo Cim. 22: 1051–1068 MathSciNetGoogle Scholar
  24. 24.
    Roberts, J.E.: Lectures on algebraic quantum field theory. In: The Algebraic Theory of Superselection Sectors, D. Kastler (ed.), Singapore: World Scientific, 1990, pp. 1–112Google Scholar
  25. 25.
    Schmidt M.U. (1990). Lowest weight representations of some infinite dimensional groups on Fock spaces. Acta Appl. Math. 18: 59–84 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schwinger, J.: On angular momentum. In: Quantum Theory of Angular Momentum, L.C. Biedenharn, H. Van Dam (eds.), New York: Academic Press, 1965, pp. 229–279Google Scholar
  27. 27.
    Todorov, I.T.: Infinite-dimensional Lie algebras in conformal QFT models. In: A.O. Barut, H.-D. (eds.), Conformal Groups and Related Symmetries. Physical Results and Mathematical Background, Lecture Notes in Physics 261, Berlin: Springer, 1986, pp. 387–443Google Scholar
  28. 28.
    Verma, D.-N.: Structure of certain induced representations of complex semisimple Lie algebras. Bull. Amer. Math. Soc. 74, 160–166 (1968); Errata, ibid. 628Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bojko Bakalov
    • 1
  • Nikolay M. Nikolov
    • 2
    • 3
  • Karl-Henning Rehren
    • 3
    Email author
  • Ivan Todorov
    • 2
    • 3
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  2. 2.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  3. 3.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany

Personalised recommendations