Advertisement

Communications in Mathematical Physics

, Volume 271, Issue 1, pp 55–91 | Cite as

Pattern Densities in Non-Frozen Planar Dimer Models

  • Cédric BoutillierEmail author
Open Access
Article

Abstract

In this paper, we introduce a family of observables for the dimer model on a bi-periodic bipartite planar graph, called pattern density fields. We study the scaling limit of these objects for non-frozen Gibbs measures of the dimer model, and prove that they converge to a linear combination of a derivative of the Gaussian massless free field and an independent white noise.

Keywords

Fundamental Domain Gibbs Measure Dime Model Geometric Realization Pattern Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bertini L., Cirillo E.N.M. and Olivieri E. (1999). Renormalization-group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions. J. Stat. Phys. 97: 831–915 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohn H., Kenyon R. and Propp J. (2001). A variational principle for domino tilings. J.Amer. Math. Soc. 14: 297–346 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Tilière, B.: Conformal invariance of isoradial dimer models & the case of triangular quadri- titlings. http://arxiv.org/list/ math.PR/0512395, 2005Google Scholar
  4. 4.
    Dobrushin R.L. and Tirozzi B. (1977). The central limit theorem and the problem of equivalence of ensembles. Commun. Math. Phys. 54: 173–192 zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Fowler R.H. and Rushbrooke G.S. (1937). Statistical theory of perfect solutions. Trans. Faraday Soc. 33: 1272–1294 CrossRefGoogle Scholar
  6. 6.
    Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for \(\nabla\phi\) interface model. Ann. Probab. 29, 1138–1172 (2001)Google Scholar
  7. 7.
    Glimm J. and Jaffe A. (1981). Quantum physics. Springer-Verlag, New York zbMATHGoogle Scholar
  8. 8.
    Guelfand, I.M., Vilenkin, N.Y.: Les distributions. Tome 4: Applications de l’analyse harmonique, Traduit du russe par G. Rideau. Collection Universitaire de Mathématiques, No. 23, Paris: Dunod, 1967Google Scholar
  9. 9.
    Iagolnitzer, D., Souillard, B.: Lee-Yang theory and normal fluctuations. Phys. Rev. B (3), 19, 1515–1518 (1979)Google Scholar
  10. 10.
    Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, London: Academic Press, 1967, pp. 43–110Google Scholar
  11. 11.
    Kenyon R. (1997). Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab. Statist. 33: 591–618 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kenyon R. (2000). Conformal invariance of domino tiling. Ann. Probab. 28: 759–795 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kenyon R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29: 1128–1137 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kenyon R. (2002). The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150: 409–439 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kenyon, R.: Height fluctuations in the honeycomb dimer model. http://arxiv.org/list/ math-ph/0405052, 2004Google Scholar
  16. 16.
    Kenyon, R.: An introduction to the dimer model. In: School and Conference on Probability Theory, ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 267–304Google Scholar
  17. 17.
    Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. http://arxiv.org/list/math-ph/0507007,2005Google Scholar
  18. 18.
    Kenyon R., Okounkov A., Sheffield, S.: Dimers and amoebae. Ann. of Math. (2), 163, 1019–1056 (2006)Google Scholar
  19. 19.
    Naddaf A. and Spencer T. (1997). On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183: 55–84 zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Neaderhouser C.C. (1978). Some limit theorems for random fields. Commun. Math. Phys. 61: 293–305 zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Newman C.M. (1980). Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74: 119–128 zbMATHCrossRefADSGoogle Scholar
  22. 22.
    Sheffield, S.: Gaussian Free Field for mathematicians. http://arxiv.org/abs/math/0312099, 2003Google Scholar
  23. 23.
    Sheffield, S.: Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications, PhD thesis, Stanford University, 2004, and Asterisque 304, (2005)Google Scholar
  24. 24.
    Soshnikov A. (2002). Gaussian limit for determinantal random point fields. Ann. Probab. 30: 171–187 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Thurston W.P. (1990). Conway’s tiling groups. Amer. Math. Monthly 97: 757–773 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands

Personalised recommendations