Skip to main content
Log in

Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solution of the Cauchy problem with compact initial profile can not be compactly supported at any later time unless it is the zero solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beals R., Sattinger D. and Szmigielski J. (2000). Multipeakons and the classical moment problem. Adv. Math. 154(2): 229–257

    Article  MATH  MathSciNet  Google Scholar 

  2. Camassa R. and Holm D. (1993). An integrable shallow water equation with peaked solutions. Phys. Rev. Lett. 71: 1661–1664

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Constantin A. (2005). Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46(2): 4

    Article  MathSciNet  Google Scholar 

  4. Constantin A. and Escher J. (1998). Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(2): 303–328

    MATH  MathSciNet  Google Scholar 

  5. Constantin A. and McKean H. (1999). A shallow water equation on the circle. Comm. Pure Appl. Math. 52: 949–982

    Article  MathSciNet  Google Scholar 

  6. Constantin A. and Strauss W. (2000). Stability of peakons. Comm. Pure Appl. Math. 53: 603–610

    Article  MATH  MathSciNet  Google Scholar 

  7. Danchin R. (2001). A few remarks on the Camassa-Holm equation. Differ. Int. Eqs. 14: 953–988

    MATH  MathSciNet  Google Scholar 

  8. De Lellis, C., Kappeler, T., Topalov, P.: Low-regularity solutions of the periodic Camassa-Holm equation. Comm. Partial Differential Equations (to appear) (2007)

  9. Escauriaza L., Kenig C.E., Ponce G. and Vega L. (2006). On unique continuation of solutions of Schrödinger equations. Comm. PDE 31: 1811–1823

    Article  MATH  MathSciNet  Google Scholar 

  10. Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L.: On uniqueness properties of solutions of the k-generalized KdV equations. J. Funct. Anal. (to appear) (2006)

  11. Fuchssteiner B. and Fokas A. (1981/1982). Symplectic structures, their Backlund transformations and hereditary symmetries. Phys. D 4: 47–66

    Article  ADS  MathSciNet  Google Scholar 

  12. Fuchssteiner B. (1996). Some tricks from the symmetry-toolbox for nonlinear equations: generalization of the Camassa-Holm equation. Physica D 95: 229–243

    Article  MATH  MathSciNet  Google Scholar 

  13. Henry D. (2005). Compactly supported solutions of the Camassa-Holm equation. J. Nonlinear Math. Phys. 12: 342–347

    Article  MATH  MathSciNet  Google Scholar 

  14. Himonas A. and Misiołek G. (2001). The Cauchy problem for an integrable shallow water equation. Differ. Int. Eqs. 14: 821–831

    MATH  Google Scholar 

  15. Himonas A. and Misiołek G. (2005). High-frequency smooth solutions and well-posedness of the Camassa-Holm equation. Int. Math. Res. Not. 51: 3135–3151

    Article  Google Scholar 

  16. Li Y. and Olver P. (2000). Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Eqs. 162: 27–63

    Article  MATH  MathSciNet  Google Scholar 

  17. McKean H. (2004). Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. 57: 416–418

    Article  MATH  MathSciNet  Google Scholar 

  18. McKean H. (1998). Breakdown of a shallow water equation. Asian J. Math. 2: 767–774

    MathSciNet  Google Scholar 

  19. Misiołek G. (2002). Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12: 1080–1104

    Article  MathSciNet  MATH  Google Scholar 

  20. Molinet L. (2004). On well-posedness results for the Camassa-Holm equation on the line: A survey. J. Nonlin. Math. Phys. 11: 521–533

    Article  MATH  MathSciNet  Google Scholar 

  21. Rodriguez-Blanco G. (2001). On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46: 309–327

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhou, Y.: Infinite propagation speed for a shallow water equation. Preprint, available at http://www.fim.math.ethz.ch/preprints/2005/zhou.pdf, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Misiołek.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himonas, A.A., Misiołek, G., Ponce, G. et al. Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation. Commun. Math. Phys. 271, 511–522 (2007). https://doi.org/10.1007/s00220-006-0172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0172-4

Keywords

Navigation