Skip to main content
Log in

Quantum Diffusion of the Random Schrödinger Evolution in the Scaling Limit II. The Recollision Diagrams

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider random Schrödinger equations on \({\mathbb{R}^{d}}\) for d≥ 3 with a homogeneous Anderson-Poisson type random potential. Denote by λ the coupling constant and ψ t the solution with initial data ψ0. The space and time variables scale as \({x\sim \lambda^{-2 -\kappa/2}, t \sim \lambda^{-2 -\kappa}}\) with 0 < κ <  κ0(d). We prove that, in the limit λ → 0, the expectation of the Wigner distribution of ψ t converges weakly to the solution of a heat equation in the space variable x for arbitrary L 2 initial data. The proof is based on a rigorous analysis of Feynman diagrams. In the companion paper [10] the analysis of the non-repetition diagrams was presented. In this paper we complete the proof by estimating the recollision diagrams and showing that the main terms, i.e. the ladder diagrams with renormalized propagator, converge to the heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M. and Molchanov S. (1993). Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157: 245–278

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Aizenman M., Sims R. and Warzel S. (2006). Absolutely continuous spectra of quantum tree graphs with weak disorder. Commun. Math. Phys. 264: 371–389

    Article  MathSciNet  ADS  Google Scholar 

  3. Anderson P. (1958). Absences of diffusion in certain random lattices. Phys. Rev. 109: 1492–1505

    Article  ADS  Google Scholar 

  4. Bourgain, J.: Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena. Lecture Notes in Mathematics, Vol. 1807, Berlin-Heidelberg: Springer, 2003, pp. 70–99

  5. Chen T. (2005). Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3. J. Stat. Phys. 120(1–2): 279–337

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Denisov S.A. (2004). Absolutely continuous spectrum of multidimensional Schrödinger operator. Int. Math. Res. Not. 2004(74): 3963–3982

    Article  MATH  MathSciNet  Google Scholar 

  7. Erdős L. and Yau H.-T. (2000). Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation. Commun. Pure Appl. Math. LIII: 667–735

    Article  Google Scholar 

  8. Erdős, L., Salmhofer, M., Yau, H.-T.: Towards the quantum Brownian motion. Lecture Notes in Physics, 690, In: Mathematical Physics of Quantum Mechanics, Selected and Refereed Lectures from QMath9, Asch, J., Joye, A. (eds) Berlin-Heidelberg: Springer, 2006, pp. 233–258

  9. Erdős, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion for the Anderson model in scaling limit. Submitted to Ann. Inst. H. Poincaré (2006), available  at http://xxx.lanl.gov/abs/math-ph/0502025, 2005

  10. Erdős, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit I. The non-recollision diagrams. Available at http://xxx.lanl.gov/abs/math-ph/0512014, 2005

  11. Froese, R., Hasler, D., Spitzer, W.: Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein’s theorem. Preprint http://xxx.lanl.gov/math-ph/051150 2005

  12. Fröhlich J. and Spencer T. (1983). Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88: 151–184

    Article  MATH  ADS  Google Scholar 

  13. Goldsheid I.Ya., Molchanov S.A. and Pastur L.A. (1997). A pure point spectrum of the one dimensional Schrödinger operator. Funct. Anal. Appl. 11: 1–10

    Google Scholar 

  14. Klein A. (1994). Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett. 1: 399–407

    MATH  MathSciNet  Google Scholar 

  15. Lukkarinen, J., Spohn, H.: Kinetic limit for wave propagation in a random medium. Preprint. http://xxx.lanl.gov/math-ph/0505075, 2005

  16. Rodnianski I. and Schlag W. (2003). Classical and quantum scattering for a class of long range random potentials. Int. Math. Res. Not. 5: 243–300

    Article  MathSciNet  Google Scholar 

  17. Schlag W., Shubin C. and Wolff T. (2002). Frequency concentration and location lengths for the Anderson model at small disorders. J. Anal. Math. 88: 173–220

    Article  MATH  MathSciNet  Google Scholar 

  18. Spohn H. (1977). Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17(6): 385–412

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Erdős.

Additional information

Communicated by M. Aizenman

Partially supported by NSF grant DMS-0200235 and EU-IHP Network “Analysis and Quantum” HPRN-CT-2002-0027.

Partially supported by NSF grant DMS-0602038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, L., Salmhofer, M. & Yau, HT. Quantum Diffusion of the Random Schrödinger Evolution in the Scaling Limit II. The Recollision Diagrams. Commun. Math. Phys. 271, 1–53 (2007). https://doi.org/10.1007/s00220-006-0158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0158-2

Keywords

Navigation