Skip to main content
Log in

Bosons in Disc-Shaped Traps: From 3D to 2D

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a mathematically rigorous analysis of the ground state of a dilute, interacting Bose gas in a three-dimensional trap that is strongly confining in one direction so that the system becomes effectively two-dimensional. The parameters involved are the particle number, \(N\gg 1\), the two-dimensional extension, \(\bar L\), of the gas cloud in the trap, the thickness, \(h\ll \bar L\) of the trap, and the scattering length a of the interaction potential. Our analysis starts from the full many-body Hamiltonian with an interaction potential that is assumed to be repulsive, radially symmetric and of short range, but otherwise arbitrary. In particular, hard cores are allowed. Under the premises that the confining energy, ~ 1/h 2, is much larger than the internal energy per particle, and a/h→ 0, we prove that the system can be treated as a gas of two-dimensional bosons with scattering length a 2D = hexp(−(const.)h/a). In the parameter region where \(a/h\ll |\ln(\bar\rho h^2)|^{-1}\), with \(\bar\rho\sim N/\bar L^2\) the mean density, the system is described by a two-dimensional Gross-Pitaevskii density functional with coupling parameter ~ Na/h. If \(|\ln(\bar\rho h^2)|^{-1}\lesssim a/h\) the coupling parameter is \(\sim N |\ln(\bar\rho h^2)|^{-1}\) and thus independent of a. In both cases Bose-Einstein condensation in the ground state holds, provided the coupling parameter stays bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombe Y., Kadio D., Olshanii M., Mercier B., Lorent V., Perrin H. (2003) Schemes for loading a Bose-Einstein condensate into a two-dimensional dipole trap. J. Optics B 5: 155

    ADS  Google Scholar 

  2. Das, K.K.: Highly anisotropic Bose-Einstein condensates: Crossover to lower dimensionality. Phys. Rev. A 66, 053612-1–7 (2002)

    Google Scholar 

  3. Das, K.K., Girardeau, M.D., Wright, E.M.: Crossover from One to Three Dimensions for a Gas of Hard-Core Bosons. Phys. Rev. Lett. 89, 110402-1–4 (2002)

    Google Scholar 

  4. Dunjko V., Lorent V., Olshanii M. (2001) Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime, Tonks-Girardeau Regime, and In Between. Phys. Rev. Lett. 86, 5413–5316

    Article  ADS  Google Scholar 

  5. Dyson F.J. (1957) Ground-State Energy of a Hard-Sphere Gas. Phys. Rev. 106, 20–26

    Article  MATH  ADS  Google Scholar 

  6. Girardeau M.D. (1960) Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Girardeau M.D., Wright E.M. (2001) Bose-Fermi Variational Theory for the BEC-Tonks Crossover. Phys. Rev. Lett. 87, 210402-1–4

    Article  Google Scholar 

  8. Görlitz A., et al.: Realization of Bose-Einstein Condensates in Lower Dimension. Phys. Rev. Lett. 87, 130402-1–4 (2001)

    Google Scholar 

  9. Greiner M., Bloch I., Mandel O., Hänsch T.W., Esslinger T. (2001) Exploring Phase Coherence in a 2D Lattice of Bose-Einstein Condensates. Phys. Rev. Lett. 87, 160405

    Article  ADS  Google Scholar 

  10. Kinoshita T., Wenger T., Weiss D.S. (2004) Observation of a One-Dimensional Tonks-Girardeau Gas. Science 305, 1125-1-128

    Article  ADS  Google Scholar 

  11. Lieb E.H., Liniger W. (1963) Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Phys. Rev. 130, 1605–1616

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein Condensation for Dilute Trapped Gases. Phys. Rev. Lett. 88, 170409-1-4 (2002)

    Google Scholar 

  13. Lieb E.H., Seiringer R., Yngvason J. (2000) Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional. Phys. Rev. A 61: 043602

    Article  ADS  Google Scholar 

  14. Lieb E.H., Seiringer R., Yngvason J. (2001) A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-dimensional Bose Gas. Commun. Math. Phys. 224: 17

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Lieb, E.H., Seiringer, R., Yngvason, J.: One-Dimensional Behavior of Dilute, Trapped Bose Gases. Commun. Math. Phys. 244, 347–393 (2004). See also: One-Dimensional Bosons in Three-Dimensional Traps. Phys. Rev. Lett. 91, 150401-1-4 (2003)

    Google Scholar 

  16. Lieb E.H., Seiringer R., Yngvason J. (2003) Poincaré Inequalities in Punctured Domains. Ann. Math. 158, 1067–1080

    Article  MATH  MathSciNet  Google Scholar 

  17. Lieb E.H., Seiringer R., Solovej J.P., Yngvason J. (2005) The Mathematics of the Bose gas and its Condensation. Basel, Birkhäuser

    MATH  Google Scholar 

  18. Lieb E.H., Yngvason J. (1998) Ground State Energy of the Low Density Bose Gas. Phys. Rev. Lett. 80, 2504–2507

    Article  ADS  Google Scholar 

  19. Lieb E.H., Yngvason J. (2001) The Ground State Energy of a Dilute Two-dimensional Bose Gas. J. Stat. Phys. 103: 509

    Article  MATH  MathSciNet  Google Scholar 

  20. Moritz H., Stöferle T., Köhl M., Esslinger T. (2003) Exciting Collective Oscillations in a Trapped 1D Gas. Phys. Rev. Lett. 91: 250402

    Article  ADS  Google Scholar 

  21. Olshanii M. (1998) Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys. Rev. Lett. 81, 938–941

    Article  ADS  Google Scholar 

  22. Olshanii M., Pricoupenko L. (2002) Rigorous approach to the problem of ultraviolet divergences in dilute Bose gases. Phys. Rev. Lett. 88: 010402

    Article  ADS  Google Scholar 

  23. Paredes B., Widera A., Murg1 V., Mandel O., Flling S., Cirac I., Shlyapnikov G.V., Hänsch T.W., Bloch I. (2004) Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281

    Article  ADS  Google Scholar 

  24. Petrov D.S., Gangardt D.M., Shlyapnikov G.V. (2004) Low-dimensional trapped gases. J. Phys. IV France 116, 3–44

    Article  Google Scholar 

  25. Petrov D.S., Holzmann M., Shlyapnikov G.V. (2000) Bose-Einstein Condensates in Quasi-2D Trapped Gases. Phys. Rev. Lett. 84: 2551

    Article  ADS  Google Scholar 

  26. Petrov D.S., Shlyapnikov G.V., Walraven J.T.M. (2000) Regimes of Quantum Degeneracy in Trapped 1D Gases. Phys. Rev. Lett. 85, 3745–3749

    Article  ADS  Google Scholar 

  27. Pitaevskii L., Stringari S. (2003) Bose-Einstein Condensation. Oxford, Oxford Science Publications

    MATH  Google Scholar 

  28. Pricoupenko L. (2004) Variational approach for the two-dimensional trapped Bose-Einstein condensate. Phys. Rev. A 70: 013601

    Article  ADS  Google Scholar 

  29. Reed M., Simon B. (1978) Methods of Modern Mathematical Physics IV. New York, Academic Press

    MATH  Google Scholar 

  30. Robinson D.W. (1971) The Thermodynamic Pressure in Quantum Statistical Mechanics. Lecture Notes in Physics, Vol. 9. Berlin Heidelberg New York, Springer

    Google Scholar 

  31. Rychtarik D., Engeser B., Nägerl H.-C., Grimm R. (2004) Two-dimensional Bose-Einstein condensate in an optical surface trap. Phys. Rev. Lett. 92: 173003

    Article  ADS  Google Scholar 

  32. Schick M. (1971) Two-Dimensional System of Hard Core Bosons. Phys. Rev. A 3, 1067–1073

    Article  ADS  Google Scholar 

  33. Schreck F., et al. (2001) Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea. Phys. Rev. Lett. 87, 080403

    Article  ADS  Google Scholar 

  34. Seiringer R. (2002) Gross-Pitaevskii Theory of the Rotating Bose Gas. Commun. Math. Phys. 229, 491–509

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Seiringer R. (2003) Ground state asymptotics of a dilute, rotating gas. J. Phys. A: Math. Gen. 36, 9755–9778

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Seiringer, R.: Dilute, Trapped Bose gases and Bose-Einstein Condensation. In: Large Coulomb Systems, Derezinski, J., Siedentop, H. (eds.) Lect. Notes in Phys. 695, Berlin Heidelberg-New York: Springer, 2006, pp. 251–276, avilable at http://www.esi.ac.at/preprints/ESI-Preprints.html, 2004

  37. Temple G. (1928) The theory of Rayleigh’s Principle as Applied to Continuous Systems. Proc. Roy. Soc. London A 119, 276–293

    MATH  ADS  Google Scholar 

  38. Zobay O., Garraway B.M. (2004) Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials. Phys. Rev. A 69: 023605

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yngvason.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnee, K., Yngvason, J. Bosons in Disc-Shaped Traps: From 3D to 2D. Commun. Math. Phys. 269, 659–691 (2007). https://doi.org/10.1007/s00220-006-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0136-8

Keywords

Navigation