Skip to main content
Log in

Quantum Spin Systems at Positive Temperature

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins \(\mathcal{S}\) satisfy \(\beta\ll\sqrt\mathcal{S}\). From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with \(\mathcal{S}\gg1\). The most notable examples are the quantum orbital-compass model on \(\mathbb{Z}^2\) and the quantum 120-degree model on \(\mathbb{Z}^3\) which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander K., Chayes L. (1997) Non-perturbative criteria for Gibbsian uniqueness. Commun. Math. Phys. 189(2): 447–464

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Ali S.T., Antoine J.-P., Gazeau J.-P., Mueller U.A. (1995) Coherent states and their generalizations: a mathematical overview. Rev. Math. Phys. 7(7): 1013–1104

    Article  MATH  MathSciNet  Google Scholar 

  3. Arecchi F.T., Courtens E., Gilmore R., Thomas H. (1972) Atomic coherent states in quantum optics. Phys. Rev. A 6(6): 2211–2237

    Article  ADS  Google Scholar 

  4. Berezin, F.A.: Covariant and contravariant symbols of operators (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 36 1134–1167 (1972) [English translation: Math. USSR-Izv. 6, 1117–1151 (1973) (1972)]

  5. Biskup M., Chayes L., Kivelson S.A. (2004) Order by disorder, without order, in a two-dimensional spin system with O(2)-symmetry. Ann. Henri Poincaré 5(6): 1181–1205

    Article  MATH  MathSciNet  Google Scholar 

  6. Biskup M., Chayes L., Nussinov Z. (2005) Orbital ordering in transition-metal compounds: I. The 120-degree model. Commun. Math. Phys. 255, 253–292

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Biskup, M., Chayes, L., Nussinov, Z.: Orbital ordering in transition-metal compounds: II. The orbital-compass model. In preparation

  8. Biskup M., Kotecký R. (2006) Forbidden gap argument for phase transitions proved by means of chessboard estimates. Commun. Math. Phys. 264(3): 631–656

    Article  ADS  Google Scholar 

  9. Bolina O., Contucci P., Nachtergaele B., Starr S. (2000) Finite-volume excitations of the 111 interface in the quantum XXZ model. Commun. Math. Phys. 212(1): 63–91

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Borgs C., Kotecký R., Ueltschi D. (1996) Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181(2): 409–446

    Article  MATH  ADS  Google Scholar 

  11. Chayes L., Kotecký R., Shlosman S.B. (1997) Staggered phases in diluted systems with continuous spins. Commun. Math. Phys. 189, 631–640

    Article  MATH  ADS  Google Scholar 

  12. Conlon J.G., Solovej J.P. (1990) On asymptotic limits for the quantum Heisenberg model. J. Phys. A 23(14): 3199–3213

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Datta N., Fernández R., Fröhlich J. (1996) Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84(3-4): 455–534

    Article  MATH  Google Scholar 

  14. Datta N., Fernández R., Fröhlich J. (1996) Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta 69(5-6): 752–820

    MATH  MathSciNet  Google Scholar 

  15. Davies E.B. (1976) Quantum Theory of Open Systems. Academic Press Inc (London) Ltd., London

    MATH  Google Scholar 

  16. Dobrushin R.L., Shlosman S.B. (1981) Phases corresponding to minima of the local energy. Selecta Math. Soviet. 1(4): 317–338

    MathSciNet  Google Scholar 

  17. Duffield N.G. (1990) Classical and thermodynamic limits for generalised quantum spin systems. Commun. Math. Phys. 127(1): 27–39

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Dyson F.J. (1956) General theory of spin-wave interactions. Phys. Rev. 102(5): 1217–1230

    Article  MathSciNet  ADS  Google Scholar 

  19. Dyson F.J. (1956) Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102(5): 1230–1244

    Article  MathSciNet  ADS  Google Scholar 

  20. Dyson F.J., Lieb E.H., Simon B. (1978) Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383

    Article  MathSciNet  Google Scholar 

  21. van Enter A.C.D., Shlosman S.B. (2002) First-order transitions for n-vector models in two and more dimensions: Rigorous proof. Phys. Rev. Lett. 89, 285702

    Article  Google Scholar 

  22. van Enter A.C.D., Shlosman S.B. (2005) Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries. Commun. Math. Phys. 255, 21–32

    Article  MATH  ADS  Google Scholar 

  23. Fröhlich J., Israel R., Lieb E.H., Simon B. (1978) Phase transitions and reflection positivity. I. General theory and long-range lattice models. Commun. Math. Phys. 62(1): 1–34

    Article  ADS  Google Scholar 

  24. Fröhlich J., Israel R., Lieb E.H., Simon B. (1980) Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interations. J. Stat. Phys. 22(3): 297–347

    Article  Google Scholar 

  25. Fröhlich J., Lieb E.H. (1978) Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60(3): 233–267

    Article  ADS  Google Scholar 

  26. Fröhlich J., Simon B., Spencer T. (1976) Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95

    Article  ADS  Google Scholar 

  27. Fuller W., Lenard A. (1979) Generalized quantum spins, coherent states, and Lieb inequalities. Commun. Math. Phys. 67(1): 69–84

    Article  MathSciNet  ADS  Google Scholar 

  28. Fuller W., Lenard A. (1979) Addendum: “Generalized quantum spins, coherent states, and Lieb inequalities.” Commun. Math. Phys. 69(1): 99

    Article  MathSciNet  ADS  Google Scholar 

  29. Gawȩdzki K. (1978) Existence of three phases for a \(P(\phi)_{2}\) model of quantum field. Commun. Math. Phys. 59(2): 117–142

    Article  MathSciNet  ADS  Google Scholar 

  30. Israel R.B. (1979) Convexity in the Theory of Lattice Gases. With an introduction by Arthur S. Wightman. Princeton Series in Physics. Princeton University Press, Princeton, N.J.

    Google Scholar 

  31. Kennedy T. (1985) Long range order in the anisotropic quantum ferromagnetic Heisenberg model. Commun. Math. Phys. 100(3): 447–462

    Article  ADS  Google Scholar 

  32. Koma, T., Nachtergaele, B.: Low-lying spectrum of quantum interfaces. Abstracts of the AMS 17, 146 (1996) and unpublished notes

  33. Kotecký R., Shlosman S.B. (1982) First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83(4): 493–515

    Article  ADS  Google Scholar 

  34. Kotecký, R., Shlosman, S.B.: Existence of first-order transitions for Potts models. In: Albeverio, S., Ph. Combe, M. Sirigue-Collins (eds.), Proc. of the International Workshop—Stochastic Processes in Quantum Theory and Statistical Physics, Lecture Notes in Physics 173, Berlin-Heidelberg-New York: Springer-Verlag, 1982, pp. 248–253

  35. Kotecký R., Ueltschi D. (1999) Effective interactions due to quantum fluctuations. Commun. Math. Phys. 206(2): 289–335

    Article  MATH  ADS  Google Scholar 

  36. Lieb E.H. (1973) The classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340

    Article  MathSciNet  ADS  Google Scholar 

  37. Lieb E., Mattis D. (1962) Ordering energy levels of interacting spin systems. J. Math. Phys. 3(4): 749–751

    Article  MATH  Google Scholar 

  38. Michoel T., Nachtergaele B. (2005) The large-spin asymptotics of the ferromagnetic XXZ chain. Markov Proc. Rel. Fields 11(2): 237–266

    MATH  MathSciNet  Google Scholar 

  39. Michoel T., Nachtergaele B. (2004) Central limit theorems for the large-spin asymptotics of quantum spins. Probab. Theory Related Fields 130(4): 493–517

    Article  MATH  MathSciNet  Google Scholar 

  40. Mishra A., Ma M., Zhang F.-C., Guertler S., Tang L.-H., Wan S. (2004) Directional ordering of fluctuations in a two-dimensional compass model. Phys. Rev. Lett. 93(20): 207201

    Article  ADS  Google Scholar 

  41. Nussinov Z., Biskup M., Chayes L., van den Brink J. (2004) Orbital order in classical models of transition-metal compounds. Europhys. Lett. 67(6): 990–996

    Article  ADS  Google Scholar 

  42. Perelomov A. (1986) Generalized Coherent States and Their Applications, Texts and Monographs in Physics. Springer-Verlag, Berlin

    Google Scholar 

  43. Robinson D.W. (1968) Statistical mechanics of quantum spin systems II. Commun. Math. Phys. 7(3): 337–348

    Article  MATH  ADS  Google Scholar 

  44. Shlosman S.B.: The method of reflective positivity in the mathematical theory of phase transitions of the first kind (Russian). Usp. Mat. Nauk 41(3)(249), 69–111, 240 (1986)

  45. Simon B. (1980) The classical limit of quantum partition functions. Commun. Math. Phys. 71(3): 247–276

    Article  MATH  ADS  Google Scholar 

  46. Simon B. (1993) The Statistical Mechanics of Lattice Gases. Vol. I., Princeton Series in Physics, Princeton, NJ: Princeton, University Press,

  47. Speer E.R. (1985) Failure of reflection positivity in the quantum Heisenberg ferromagnet. Lett. Math. Phys. 10(1): 41–47

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Biskup.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskup, M., Chayes, L. & Starr, S. Quantum Spin Systems at Positive Temperature. Commun. Math. Phys. 269, 611–657 (2007). https://doi.org/10.1007/s00220-006-0135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0135-9

Keywords

Navigation