Skip to main content
Log in

The Dynamics of Relativistic Strings Moving in the Minkowski Space \(\mathbb{R}^{1+n}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate the dynamics of relativistic (in particular, closed) strings moving in the Minkowski space \(\mathbb{R}^{1+n}\;(n\ge 2)\). We first derive a system with n nonlinear wave equations of Born-Infeld type which governs the motion of the string. This system can also be used to describe the extremal surfaces in \(\mathbb{R}^{1+n}\). We then show that this system enjoys some interesting geometric properties. Based on this, we give a sufficient and necessary condition for the global existence of extremal surfaces without space-like point in \(\mathbb{R}^{1+n}\) with given initial data. This result corresponds to the global propagation of nonlinear waves for the system describing the motion of the string in \(\mathbb{R}^{1+n}\). We also present an explicit exact representation of the general solution for such a system. Moreover, a great deal of numerical analyses are investigated, and the numerical results show that, in phase space, various topological singularities develop in finite time in the motion of the string. Finally, some important discussions related to the theory of extremal surfaces of mixed type in \(\mathbb{R}^{1+n}\) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbashov B.M., Nesterenko V.V., Chervyakov A.M. (1982). General solutions of nonlinear equations in the geometric theory of the relativistic string. Commun. Math. Phys. 84:471–481

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Boillat G. (1972). Chocs caractéristiques. C. R. Acad. Sci., Paris, Sér. A 274:1018–1021

    MATH  MathSciNet  Google Scholar 

  3. Bordemann M., Hoppe J. (1994). The dynamics of relativistic membranes II: Nonlinear waves and covariantly reduced membrane equations. Phys. Lett. B 325:359–365

    Article  MathSciNet  ADS  Google Scholar 

  4. Born M., Infeld L. (1934). Foundation of the new field theory. Proc. Roy. Soc. London A144:425–451

    MATH  ADS  Google Scholar 

  5. Brenier Y. (2002). Some Geometric PDEs Related to Hydrodynamics and Electrodynamics. Proceedings of ICM 2002 3:761–772

    MATH  Google Scholar 

  6. Calabi, E.: Examples of Bernstein problems for some nonlinear equations. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Providence, RI: Amer. Math. Soc., 1970 pp. 223–230.

  7. Cheng S.Y., Yau S.T. (1976). Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. of Math. 104:407–419

    Article  MATH  MathSciNet  Google Scholar 

  8. Chae D., Huh H. (2003). Global existence for small initial data in the Born-Infeld equations. J. Math. Phys. 44:6132–6139

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Christodoulou D. (1986). Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math. 39:267–282

    MATH  MathSciNet  Google Scholar 

  10. Freistühler H. (1991). Linear degeneracy and shock waves. Math. Zeit. 207:583–596

    MATH  Google Scholar 

  11. Gibbons G.W. (1998). Born-Infeld particles and Dirichlet p-branes. Nucl. Phys. B 514:603–639

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Green, M.B., Schwarz, J.H., Witten, E.: Superstring theory: 1. Introduction. Second edition, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1988

  13. Gu, C.H.: Extremal surfaces of mixed type in Minkowski space \(\mathbb{R}^{n+1}\). In: Variational methods (Paris, 1988), Progr. Nonlinear Differential Equations Appl. 4, Boston, MA: Birkhäuser Boston, 1990, pp. 283–296

  14. Gu C.H. (1994). Complete extremal surfaces of mixed type in 3-dimensional Minkowski space. Chinese Ann. Math. 15B:385–400

    MATH  Google Scholar 

  15. Hoppe J. (1994). Some classical solutions of relativistic membrane equations in 4-space-time dimensions. Phys. Lett. B 329:10–14

    Article  MathSciNet  ADS  Google Scholar 

  16. Klainerman, S.: The null condition and global existence to nonlinear wave equations. In Lectures in Appl. Math. 23, Providence, RI: Amer. Math. Soc., 1986, pp. 293–326.

  17. Kong D.X. (2004). A nonlinear geometric equation related to electrodynamics. Europhys. Lett. 66:617–623

    Article  MathSciNet  ADS  Google Scholar 

  18. Kong, D.X., Sun, Q.Y., Zhou, Y.: The equation for time-like extremal surfaces in Minkowski space \(\mathbb{R}^{1+n}\). J. Math. Phys. 47, 013503 (2006)

    Google Scholar 

  19. Kong D.X., Tsuji M. (1999). Global solutions for 2 × 2 hyperbolic systems with linearly degenerate characteristics. Funkcialaj Ekvacioj 42:129–155

    MATH  MathSciNet  Google Scholar 

  20. Lax P.D. (1957). Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10:537–556

    MATH  MathSciNet  Google Scholar 

  21. Lindblad H. (2004). A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time. Proc. Amer. Math. Soc. 132:1095–1102

    Article  MATH  MathSciNet  Google Scholar 

  22. Milnor T. (1990). Entire timelike minimal surfaces in E 3,1. Michigan Math. J. 37:163–177

    Article  MATH  MathSciNet  Google Scholar 

  23. Serre D. (2000). Systems of Conservation Laws 2: Geometric Structures, Oscillations, and Initial-Boundary Value Problems. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Xing Kong.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, DX., Zhang, Q. & Zhou, Q. The Dynamics of Relativistic Strings Moving in the Minkowski Space \(\mathbb{R}^{1+n}\) . Commun. Math. Phys. 269, 153–174 (2007). https://doi.org/10.1007/s00220-006-0124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0124-z

Keywords

Navigation