Skip to main content
Log in

Mirror Symmetry in Two Steps: A–I–B

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We suggest an interpretation of mirror symmetry for toric varieties via an equivalence of two conformal field theories. The first theory is the twisted sigma model of a toric variety in the infinite volume limit (the A–model). The second theory is an intermediate model, which we call the I–model. The equivalence between the A–model and the I–model is achieved by realizing the former as a deformation of a linear sigma model with a complex torus as the target and then applying to it a version of the T–duality. On the other hand, the I–model is closely related to the twisted Landau-Ginzburg model (the B–model) that is mirror dual to the A–model. Thus, the mirror symmetry is realized in two steps, via the I–model. In particular, we obtain a natural interpretation of the superpotential of the Landau-Ginzburg model as the sum of terms corresponding to the components of a divisor in the toric variety. We also relate the cohomology of the supercharges of the I–model to the chiral de Rham complex and the quantum cohomology of the underlying toric variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batyrev V. (1993) Quantum cohomology rings of toric varieties. Asterisque 218, 9–34

    MATH  MathSciNet  Google Scholar 

  • Baulieu L., Losev A., Nekrasov N. (2002) Target space symmetries in topological theories I. J. HEP 02, 021

    MathSciNet  ADS  Google Scholar 

  • Baulieu L., Singer I. (1989) The topological sigma model. Commun. Math. Phys. 125, 227–237

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Borisov L. (2001) Vertex algebras and mirror symmetry. Commun. Math. Phys. 215, 517–557

    Article  MATH  ADS  Google Scholar 

  • Cecotti S., Vafa C. (1993) On classification of N = 2 supersymmetric theories. Commun. Math. Phys. 158, 569

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Cordes, S., Moore, G., Ramgoolam, S.: Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theory. In: Géométries fluctuantes en mécanique statistique et en théorie des champs (Les Houches, 1994), Amsterdam: North-Holland, 1996, pp. 505–682

  • Eguchi T., Hori K., Yang S.-K. (1995) Topological sigma models and large N matrix integrals. Int. J. Mod. Phys. A10: 4203

    MathSciNet  ADS  Google Scholar 

  • Fateev V., Lukyanov S. (1988) The models of two-dimensional conformal quantum field theory with \({\mathbb{Z}_{n}}\) symmetry. Int. J. Mod. Phys. A3, 507–520

    MathSciNet  ADS  Google Scholar 

  • Feigin, B.: Super quantum groups and the algebra of screenings for \({{\widehat{sl}}_{2}}\) algebra. RIMS Preprint

  • Feigin B., Frenkel E. (1990) Representations of affine Kac–Moody algebras, bosonization and resolutions, Lett. Math. Phys. 19, 307–317

    Article  MATH  MathSciNet  Google Scholar 

  • Feigin B., Frenkel E. (1991) Semi-infinite Weil complex and the Virasoro algebra. Comm. Math. Phys 137 617–639

    MathSciNet  Google Scholar 

  • Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. In: Proceedings of the C.I.M.E. School Integrable Systems and Quantum Groups, Italy, June 1993, Lect. Notes in Math. 1620, Berlin-Heidelberg-New York: Springer, 1995

  • Fendley P., Intriligator K. (1992) Scattering and thermodynamics in integrable N = 2 theories. Nucl. Phys. 380, 265–292

    Article  MathSciNet  ADS  Google Scholar 

  • Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs 88, Second Edition, Providence, RI: AMS, 2004

  • Friedan D., Martinec E., Shenker S. (1986) Conformal invariance, supersymmetry and string theory. Nucl. Phys. B271, 93–165

    MathSciNet  ADS  Google Scholar 

  • Givental, A.: Homological geometry and mirror symmetry. In: Proceedings of ICM, Zürich 1994, Basel: Birkhäuser, pp. 472–480 1995, A mirror theorem for toric complete intersections. In: Topological field theory, primitive forms and related topics (Kyoto, 1996), eds. M. Kashiwara, e.a., Progr. Math. 160, Boston: Birkhäuser, 1998, pp. 141–175

  • Gorbounov, V., Malikov, F., Schechtman, V.: Twisted chiral de Rham algebras on \({\mathbb{P}^{1}}\) , MPI Preprint, 2001

  • Hori, K., Vafa, C.: Mirror symmetry. http://arxic.org/list/hep-th/0002222, 2000

  • Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry, Clay Mathematics Monographs, Vol. 1, Providence, RI: AMS, 2004

  • Kapustin, A.: Chiral de Rham complex and the half-twisted sigma-model. http://arxiv.org/list/ hep-th/0504074, 2005

  • Kapustin A., Orlov D. (2003) Vertex algebras, mirror symmetry, and D-branes: the case of complex tori. Commun. Math. Phys. 233: 79–136

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Losev, A.: Hodge strings and elements of K. Saito’s theory of primitive form. In: Topological field theory, primitive forms and related topics (Kyoto, 1996), eds. M. Kashiwara, e.a., pp. 305–335, Progr. Math. 160, Basel: Birkhäuser, 1998, pp. 305–355

  • Losev A., Marshakov A., Zeitlin A. (2006) On first order formalism in string theory. Phys. Lett. B633, 375–381

    MathSciNet  ADS  Google Scholar 

  • Losev, A., Nekrasov, N., Shatashvili, S.: The freckled instantons. In: The many faces of the superworld, River Edge, NJ: World Sci. Publishing, 2000, pp. 453–475

  • Malikov F., Schechtman V. (2003) Deformations of chiral algebras and quantum cohomology of toric varieties. Commun. Math. Phys. 234, 77–100

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Malikov F., Schechtman V., Vaintrob A. (1999) Chiral de Rham complex. Commun. Math. Phys. 204, 439–473

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Polyakov A. (1977) Quark confinement and topology of gauge groups. Nucl. Phys. 120, 429

    Article  MathSciNet  ADS  Google Scholar 

  • Voisin C., (1999) Mirror symmetry SFM/AMS Texts and Monographs, Vol 1. Providence RI, AMS

    Google Scholar 

  • Witten E. (1988) Topological sigma models. Commun. Math. Phys. 118, 411–449

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Diff. Geom., Vol. 1, Bethlehem, PA: Lehigh Univ., 1991, pp. 243–310

  • Witten, E.: Mirror manifolds and topological field theory. In: Essays on Mirror manifolds, Ed. S.-T. Yau, Cambridge MA: International Press 1992, pp. 120–158

  • Witten E. (1994) On the Landau-Ginzburg description of N = 2 minimal models. Int. J. Mod. Phys. A9: 4783–4800

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Witten, E.: Chern-Simons gauge theory as a string theory. In: The Floer memorial volume, Progr. Math. 133, Basel-Boston: Birkhäuser, 1995, pp. 637–678

  • Witten, E.: Two-Dimensional Models With (0,2) Supersymmetry: Perturbative Aspects. http:arxiv.org/list/ hep-th/0504078, 2005

  • Zamolodchikov, A.: Integrable field theory from conformal field theory. In: Integrable systems in quantum field theory and statistical mechanics. Adv. Stud. Pure Math. 19, New York London-San Diego: Academic Press, 1989, pp. 641–674

  • Zwiebach B. (1993) Closed String Field Theory: Quantum Action and the BV Master Equation. Nucl. Phys. B390, 33–152

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Frenkel.

Additional information

Communicated by L. Takhtajan.

Partially supported by the DARPA grant HR0011-04-1-0031 and the NSF grant DMS-0303529.

Partially supported by the Federal Program 40.052.1.1.1112, by the Grants INTAS 03-51-6346, NSh-1999/2003.2 and RFFI-04-01- 00637.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenkel, E., Losev, A. Mirror Symmetry in Two Steps: A–I–B. Commun. Math. Phys. 269, 39–86 (2007). https://doi.org/10.1007/s00220-006-0114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0114-1

Keywords

Navigation