Skip to main content
Log in

Asymptotic Behavior Near Transition Fronts for Equations of Generalized Cahn–Hilliard Form

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the asymptotic behavior of perturbations of standing wave solutions arising in evolutionary PDE of generalized Cahn–Hilliard form in one space dimension. Such equations are well known to arise in the study of spinodal decomposition, a phenomenon in which the rapid cooling of a homogeneously mixed binary alloy causes separation to occur, resolving the mixture into its two components with their concentrations separated by sharp transition layers. Motivated by work of Bricmont, Kupiainen, and Taskinen [5], we regard the study of standing waves as an interesting step toward understanding the dynamics of these transitions. A critical feature of the Cahn–Hilliard equation is that the linear operator that arises upon linearization of the equation about a standing wave solution has essential spectrum extending onto the imaginary axis, a feature that is known to complicate the step from spectral to nonlinear stability. Under the assumption of spectral stability, described in terms of an appropriate Evans function, we develop detailed asymptotics for perturbations from standing wave solutions, establishing phase-asymptotic orbital stability for initial perturbations decaying with appropriate algebraic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander J., Gardner R., Jones C.K.R.T. (1990) A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212

    MATH  MathSciNet  Google Scholar 

  2. Brin L. (2001) Numerical testing of the stability if viscous shock waves. Math. Contemp. 70(235): 1071–1088

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bricmont J., Kupiainen A. (1992) Renormalization group and the Ginzburg–Landau equation. Commun. Math. Phys. 150, 193–208

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bricmont J., Kupiainen A., Lin G. (1994) Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Comm. Pure Appl. Math. 47, 893–922

    MATH  MathSciNet  Google Scholar 

  5. Bricmont J., Kupiainen A., Taskinen J. (1999) Stability of Cahn–Hilliard fronts. Comm. Pure Appl. Math. Vol. LII, 839–871

    Article  MathSciNet  Google Scholar 

  6. Bertozzi A.L., Münch A., Shearer M. (1999) Undercompressive shocks in thin film flows. Physica D 134, 431–464

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bertozzi A.L., Münch A., Shearer M., Zumbrun K. (2001) Stability of compressive and undercompressive thin film traveling waves: The dynamics of thin film flow. European J. Appl. Math. 12, 253–291

    Article  MATH  MathSciNet  Google Scholar 

  8. Bogoliubov N.N., Shirkov D.V. (1959) The theory of quantized fields. New York, Interscience

    Google Scholar 

  9. Cahn J.W. (1961) On spinodal decomposition. Acta Metall. 9, 795–801

    Article  Google Scholar 

  10. Carlen E.A., Carvalho M.C., Orlandi E. (2001) A simple proof of stability of fronts for the Cahn–Hilliard equation. Commun. Math. Phys. 224, 323–340

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Cahn J.W., Hilliard J.E. (1958) Free energy of a nonuniform system I. interfacial free energy. J. Chem. Phys. 28, 258–267

    Article  Google Scholar 

  12. Novick–Cohen A., Segel L.A. (1984) Nonlinear aspects of the Cahn–Hilliard equation. Physica D 10, 277–298

    Article  MathSciNet  ADS  Google Scholar 

  13. Dodd, J.: Convection stability of shock profile solutions of a modified KdV–Burgers equations. Thesis under the direction of R. L. Pego, University of Maryland, 1996

  14. Evans, J.W.: Nerve Axon Equations I–IV, Indiana U. Math. J. 21, 877–885 (1972); 22, 75–90 (1972); 22, 577–594 (1972); 24, 1169–1190 (1975)

  15. Freistühler H., Szmolyan P. (2002) Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164, 287–309

    Article  MATH  MathSciNet  Google Scholar 

  16. Gao H., Liu C. (2004) Instability of traveling waves of the convective–diffusive Cahn–Hilliard equation. Chaos, Solitons & Fractals 20, 253–258

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldenfeld, N., Martin, O., Oono, Y.: Asymptotics of the renormalization group. In: Asymptotics beyond all orders, Proceedings of a NATO Advanced Research Workshop on Asymptotics Beyond all Orders, Segur, H., Tanveer, S., Levine, H. eds, New York: Plenum Press, 1991, pp. 375–383

  18. Goldenfeld N., Martin O., Oono Y., Lin F. (1990) Anomalous dimensions and the renormalization group in a nonlinear diffusion process. Phys. Rev. Lett. 64, 1361–1364

    Article  ADS  Google Scholar 

  19. Guès O., Métivier G., Williams M., Zumbrun K. (2005) Multidimensional viscous shocks. I. Degenerate symmetrizers and long time stability. J. Amer. Math. Soc. 18(1): 61–120 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  20. Goldenfeld N., Oono Y. (1991) Renormalization group theory for two problems in linear continuum mechanics. Phys. A 177, 213–219

    Article  MATH  MathSciNet  Google Scholar 

  21. Gardner R., Zumbrun K. (1998) The Gap Lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7): 797–855

    Article  MathSciNet  Google Scholar 

  22. Howard P. (1999) Pointwise estimates on the Green’s function for a scalar linear convection–diffusion equation, J. Differ. Eqs. 155, 327–367

    Article  MATH  MathSciNet  Google Scholar 

  23. Howard P. (2002) Pointwise estimates and stability for degenerate viscous shock waves. J. Reine Angew. Math. 545, 19–65

    MATH  MathSciNet  Google Scholar 

  24. Howard P. (2002) Local tracking and stability for degenerate viscous shock waves. J. Differ. Eqs. 186, 440–469

    Article  MATH  MathSciNet  Google Scholar 

  25. Howard P., Hu C. (2005) Pointwise Green’s function estimates toward stability for multidimensional fourth order viscous shock fronts. J. Differ. Eqs. 218, 325–389

    Article  MATH  MathSciNet  Google Scholar 

  26. Howard, P., Hu, C.: Nonlinear stability for multidimensional fourth order shock fronts. To appear in Arch. Rational Mech. Anal., DOI: 10.1007/s00205-005-0409-y, 2006

  27. Hoff D., Zumbrun K. (2002) Green’s function bounds for multidimensional scalar viscous shock fronts. J. Differ. Eqs. 183, 368–408

    Article  MATH  MathSciNet  Google Scholar 

  28. Hoff D., Zumbrun K. (2000) Asymptotic behavior of multidimensional scalar viscous shock fronts. Indiana U. Math. J. 49, 427–474

    Article  MATH  MathSciNet  Google Scholar 

  29. Howard, P., Raoofi, M.: Pointwise asymptotic behavior of perturbed viscous shock profiles. To appear in Advances in Differential Equations

  30. Howard P., Raoofi M., Zumbrun K. (2006) Sharp pointwise bounds for perturbed viscous shock profiles. J. Hyperbolic Diff. Eqs. 3, 297–373

    Article  MathSciNet  Google Scholar 

  31. Humpherys, J., Sandstede, B., Zumbrun, K.: Efficient computation of analytic bases in Evans function analysis of large systems. Preprint 2005

  32. Humpherys J., Zumbrun K. (2002) Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys. 53, 20–34

    Article  MATH  MathSciNet  Google Scholar 

  33. Humpherys, J., Zumbrun, K.: An efficient shooting algorithm for Evans function calculations in large systems. http://arxiv.org/list/math.NA/0508020, 2005

  34. Howard P., Zumbrun K. (2000) Pointwise estimates and stability for dispersive–diffusive shock waves. Arch. Rational Mech. Anal. 155, 85–169

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Jones C.K.R.T. (1984) Stability of the traveling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc. 286(2): 431–469

    Article  MATH  MathSciNet  Google Scholar 

  36. Korvola T. (2003) Stability of Cahn–Hilliard fronts in three dimensions. Doctoral dissertation, University of Helsinki

  37. Kato T. (2003) Perturbation theory for linear operators. 2nd Edition. Berlin–Heidelberg–New York, Springer-Verlag

    Google Scholar 

  38. Korvola T., Kupiainen A., Taskinen J. (2005) Anomalous scaling for three-dimensional Cahn–Hilliard fronts. Comm. Pure Appl. Math. Vol. LVIII, 1–39

    MathSciNet  Google Scholar 

  39. Kapitula T., Rubin J. (2000) Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity 13, 77–112

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Kapitula T., Sandstede B. (1998) Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Physica D 124, 58–103

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Liu, T.–P.: Nonlinear stability of shock waves for viscous conservation laws. Memoirs AMS 56(328) (1985)

  42. Liu T.–P. (1997) Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50(11): 1113–1182

    Article  MATH  MathSciNet  Google Scholar 

  43. Landau L.D., Lifshitz E.M. (1981) Quantum Mechanics. 3rd Ed. New York, Pergamon

    Google Scholar 

  44. Murray J.D. (1989) Mathematical Biology. Vol. 19 of Biomathematics. New York, Springer-Verlag

    Google Scholar 

  45. Mascia C., Zumbrun K. (2003) Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Rational Mech. Anal. 169, 177–263

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Oh M., Zumbrun K. (2003) Stability of periodic solutions of viscous conservation laws: Analysis of the Evans function. Arch. Rat. Mech. Anal. 166, 99–166

    Article  MATH  MathSciNet  Google Scholar 

  47. Oh M., Zumbrun K. (2003) Stability of periodic solutions of conservation laws with viscosity: pointwise bounds on the Green function. Arch. Ration. Mech. Anal. 166(2): 167–196

    Article  MATH  MathSciNet  Google Scholar 

  48. Pego R.L., Weinstein M.I. (1992) Eigenvalues and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A 340, 47–94

    MATH  MathSciNet  ADS  Google Scholar 

  49. Raoofi M. (2005) L p asymptotic behavior of perturbed viscous shock profiles. J. Hyperbolic Diff. Eqs. 2, 595–644

    Article  MATH  MathSciNet  Google Scholar 

  50. Shinozaki A., Oono Y. (1993) Dispersion relation around the kink solution of the Cahn–Hilliard equation. Phys. Rev. E 47, 804–811

    Article  ADS  Google Scholar 

  51. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl. 47, Boston, MA: Birkhauser Boston, 2001, pp. 307–516

  52. Zumbrun K., Howard P. (1998) Pointwise semigroup methods and stability of viscous shock waves. Indiana Math. J. 47, 741–871

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Howard.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, P. Asymptotic Behavior Near Transition Fronts for Equations of Generalized Cahn–Hilliard Form. Commun. Math. Phys. 269, 765–808 (2007). https://doi.org/10.1007/s00220-006-0102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0102-5

Keywords

Navigation